<u>Answer:</u> The correct answer is Option 3.
<u>Explanation:</u>
All the radioisotope decay processes follow first order kinetics.
Rate law expression for first order kinetics is given by the equation:

where,
k = rate constant = ?
t = time taken for decay process = 8.32 seconds
a = initial amount of the reactant = 80 mg
a - x = amount left after decay process = 20 mg
Putting values in above equation, we get:

The equation used to calculate half life for first order kinetics:

where,
= half life of the reaction = ?
k = 
Putting values in above equation, we get:

Hence, the correct answer is Option 3.