Answer:
[H₃O⁺] = 1.4 × 10⁻⁹ M.
Explanation:
NH₄Cl is a salt that dissolves well in water. The 2.5 M NH₄Cl will give an initial NH₄⁺ concentration of 2.5 M.
NH₃ is a weak base. It combines with water to produce NH₄⁺ and OH⁻. The opposite process can also take place. NH₄⁺ combines with OH⁻ to produce NH₃ and H₂O. The final H₃O⁺ concentration can be found from the OH⁻ concentration. What will be the final OH⁻ concentration?
Let the increase in OH⁻ concentration be x. The initial OH⁻ concentration at room temperature is 10⁻⁷ M.
Construct a RICE table for the equilibrium between NH₃ and NH₄⁺:
.
The
value for ammonia is small. The value of x will be so small that at equilibrium,
and
.
.
.
.
Again,
at room temperature.
Here, Heat is transferring directly from a place to another without direct contact, or particles in series this kind of transfer of heat is known as "Radiation"
In short, Your Answer would be Option C
Hope this helps!
Answer:
The molecular weight of the unknown gas is 16.1 g/mol.
In buffer solution there is an equilibrium between the acid HA and its conjugate base A⁻: HA(aq) ⇌ H⁺(aq) + A⁻(aq).
When acid (H⁺ ions) is added to the buffer solution, the equilibrium is shifted to the left, because conjugate base (A⁻) reacts with hydrogen cations from added acid, according to Le Chatelier's principle: H⁺(aq) + A⁻(aq) ⇄ HA(aq). So, the conjugate base (A⁻) consumes some hydrogen cations and pH is not decreasing (less H⁺ ions, higher pH of solution).
A buffer can be defined as a substance that prevents the pH of a solution from changing by either releasing or absorbing H⁺ in a solution.
Buffer is a solution that can resist pH change upon the addition of an acidic or basic components and it is able to neutralize small amounts of added acid or base, pH of the solution is relatively stable
Yes, it is possible to go do because it would be 2 stacks of 6