Answer:
All of these compounds are made from the element copper. Copper Acetates, Cuprous Oxide, Cupric Oxide (otherwise know as black copper oxide), Cupric Chloride, Copper Oxychloride, Cuprous Chloride, Cupric Nitrate, Copper Cyanide.
Explanation:
Copper is considered an element. You can use copper for Jewelry, Table Tops, Sinks, Dark Chocolate, Leafy Greens, Lobster, Nuts and Seeds, Mushrooms, Oysters, Liver and etc other nutrience. Copper is an easily molded base metal that is often added to precious metals to improve their elasticity, flexibility, hardness, colour, and resistance to corrosion.
Answer:
B₂
Explanation:
The limiting reactant is always a reactant. You can determine which reactant is limiting by identifying which has the smaller mole-to-mole ratio with the product. This ratio can be found via the coefficients of the balanced reaction.
4 A₂ + 3 B₂ ---> 6 AB
4 moles A₂
------------------ = mole-to-mole ratio A₂/AB
6 moles AB
3 moles B₂
------------------ = mole-to-mole ratio B₂/AB
6 moles AB
Since the mole-to-mole ratio between B₂ and AB is smaller, B₂ must be the limiting reactant.
Answer:
0.382 atm
Explanation:
In order to find the pressure, you need to know the moles of carbon dioxide (CO₂) gas. This can be found by multiplying the mass (g) by the molar mass (g/mol) of CO₂. It is important to arrange the conversion in a way that allows for the cancellation of units.
Molar Mass (CO₂): 12.011 g/mol + 2(15.998 g/mol)
Molar Mass (CO₂): 44.007 g/mol
15 grams CO₂ 1 mole
---------------------- x ------------------------ = 0.341 moles CO₂
44.007 grams
To find the pressure, you need to use the Ideal Gas Law equation.
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas Constant (0.08206 atm*L/mol*K)
-----> T = temperature (K)
After you convert Celsius to Kelvin, you can plug the given and calculated values into the equation and simplify to find the pressure.
P = ? atm R = 0.08206 atm*L/mol*K
V = 20 L T = 0 °C + 273.15 = 273.15 K
n = 0.341 moles
PV = nRT
P(20 L) = (0.341 moles)(0.08206 atm*L/mol*K)(273.15 K)
P(20 L) = 7.64016
P = 0.382 atm