Answer:
2192.64 PSI.
Explanation:
- From the general law of ideal gases:
<em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the container in L (V = 1650 L).
n is the no. of moles of the gas in mol (n = 9750 mol).
R is the general gas constant (R = 0.082 L.atm/mol.K).
T is the temperature of the gas in (T = 35°C + 273 = 308 K).
∴ P = nRT/V = (9750 mol)(0.082 L.atm/mol.K)(308 K)/(1650 L) = 149.2 atm.
- <u><em>To convert from atm to PSI:</em></u>
1 atm = 14.696 PSI.
<em>∴ P = 149.2 atm x (14.696 PSI/1.0 atm) = 2192.64 PSI.</em>
Answer:

Explanation:
Hello there!
In this case, according to the given STP (standard pressure and temperature), it is possible for us to realize that the equation to use here is the Avogadro's law as a directly proportional relationship between moles and volume:

In such a way, given the initial volume and both initial and final moles, we can easily compute the final volume as shown below:

Best regards!
Answer:
The balanced equation for this reaction will be
→ 
We can see that 1 mole of methane requires 4 moles of fluorine but we have 0.41 moles of CH4 and 0.56mole of F2
So using the unitary method we will get that
- 1 mole of CH4 → 4 mole of 4 mole of fluorine
- 0.41 mole of methane → 4*0.41 = 1.64 mole of fluorine for complete reaction
but we have only 0.56 mole of fluorine that means fluorine is the limiting reagent and the product will only be formed by only this amount of fluorine.
- 4 moles of fluorine → 1 mole of CF4
- 0.56 mole →
= 0.14mole of CF4
- 4 moles of fluorine → 4 moles of HF
- 0.56 mole of fluorine → 0.56 mole of HF
now to find the heat released we have the formula as
DELTA H = n * Delta H of product - n *delta H of reactant
where n is the moles of the reactant and product.
note: since no information is given about the enthalpies of the species we leave it on general equation also you need to add the product side enthalpy of the species present and similarly on the product side.