Answer:
37.8g/ 10.81g/mol = 3.4968...moles
The Mass of oxygen in isolated sample is 8.6 g
<h3>What is the
Law of Constant composition?</h3>
The law of constant composition states that pure samples of the same compound contain the same element in the same ratio by mass irrespective of the source from which the compound is obtained.
Considering the given ascorbic acid samples:
Laboratory sample contains 1.50 gg of carbon and 2.00 gg of oxygen
mass ratio of oxygen to carbon is 2 : 1.5
Isolated sample will contain 2/1.5 * 6.45 g of oxygen.
Mass of oxygen in isolated sample = 8.6 g
In conclusion, the mass of oxygen is determined from the mass ratio of oxygen and carbon in the compound.
Learn more about the Law of Constant composition at: brainly.com/question/1557481
#SPJ1
Note that the complete question is given below:
A sample of ascorbic acid (vitamin C) is synthesized in the laboratory. It contains 1.50 g of carbon and 2.00 g of oxygen. Another sample of ascorbic acid isolated from citrus fruits contains 6.45 gg of carbon. According to the law of constant composition, how many grams of oxygen does this isolated sample contain?
Express the answer in grams to three significant figures.
8.47 g
Answer:
d water I believe I'm sorry if it's wrot
When naming an ionic compound, write the name of the cation, which is the metal first. Then, write the name of the anion, which is the nonmetal. However, you remove the last 2-3 letters and replace suffixes.
1. RbF --> Rubidium Fluoride
Change fluorine to fluoride
2. CuO --> Copper (II) Oxide
Change oxygen to oxide. Oxide has a charge of -2. Since no subscripts are written, it means they have the same opposite charge. So, we use Copper (II).
<span>3. (NH</span>₄<span>)</span>₂<span>C</span>₂<span>O</span>₄ ---> Ammonium Oxalate
NH₄ is ammonia, but we change it to ammonium for polyatomic ions.