To determine the mass of oxygen per gram of sulfur for sulfur dioxide, we simply obtain the ratio of the mass of oxygen and the mass of sulfur produced from the decomposition of sulfur dioxide. All other values given in the problem statement above are just to confuse us that the question is a difficult one. We do as follows:
mass of oxygen per gram sulfur = 3.45 g / 3.46 g
mass of oxygen per gram sulfur = 0.9971 g O2 / g S
The variable that stays the same in an experiment is called the controlled variable
Hope this helps
Given:
Ma = 31.1 g, the mass of gold
Ta = 69.3 °C, the initial temperature of gold
Mw = 64.2 g, the mass of water
Tw = 27.8 °C, the initial temperature of water
Because the container is insulated, no heat is lost to the surroundings.
Let T °C be the final temperature.
From tables, obtain
Ca = 0.129 J/(g-°C), the specific heat of gold
Cw = 4.18 J/(g-°C), the specific heat of water
At equilibrium, heat lost by the gold - heat gained by the water.
Heat lost by the gold is
Qa = Ma*Ca*(T - Ta)
= (31.1 g)*(0.129 J/(g-°C)(*(69.3 - T °C)-
= 4.0119(69.3 - T) j
Heat gained by the water is
Qw = Mw*Cw*(T-Tw)
= (64.2 g)*(4.18 J/(g-°C))*(T - 27.8 °C)
= 268.356(T - 27.8)
Equate Qa and Qw.
268.356(T - 27.8) = 4.0119(69.3 - T)
272.3679T = 7738.32
T = 28.41 °C
Answer: 28.4 °C
If the reaction is a chemical change, new substances with different properties and identities are formed. This may be indicated by the production of an odor, a change in color or energy, or the formation of a solid.