Answer:
The value of DC is 66.34.
Step-by-step explanation:
The triangles ABC and DCA are right angled triangles.
The straight line AC is a bisector for angles C and A.
The measure of ∠C is 30°.
Then the measure of angles BCA and ACD will be 15° each.
The measure of angle DAB is 150°.
Then the measure of angles DAC and BAC will be 75° each.
Now consider the right angled triangle ABC.
The measure of side AC is:

Consider the right angled triangle DCA.
The angle DAC measure 75°.
Using the trigonometric identities compute the value of Perpendicular DC as follows:

Thus, the value of DC is 66.34.
Answer:
X = 67°
Step-by-step explanation:
The sum of every triangle’s interior angles is 180°. First subtract the given angle, 23°, from 180°. This equals 157°. Next you can see that one of the triangle’s angles has a right angle mark. This mark means it’s a right angle and all right angles are 90°. Take 157° and subtract 90°. This equals 67°. This means the remaining angle equals 67°.
Answer:
<em>coefficient</em><em> </em><em> </em><em>because</em><em> </em><em>they</em><em> </em><em>are</em><em> </em><em>not</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>so</em><em> </em><em>they</em><em> </em><em>can</em><em> </em><em>not</em><em> </em><em>be</em><em> </em><em>constant</em><em> </em><em>because</em><em> </em><em>it</em><em> </em><em>is</em><em> </em><em>not</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>in</em><em> </em><em>every</em><em> </em><em>week</em>