The answer is C) 35.65 + 1.85x. Hope this helps...
Since A = L * W, W = A / L.
Here, W = (6 1/8 ft^2) / (3 1/2 ft) = 1 3/4 ft.
The garden width is 1 3/4 ft.
Okay I think there has been a transcription issue here because it appears to me there are two answers. However I can spot where some brackets might be missing, bear with me on that.
A direct variation, a phrase I haven't heard before, sounds a lot like a direct proportion, something I am familiar with. A direct proportion satisfies two criteria:
The gradient of the function is constant s the independent variable (x) varies
The graph passes through the origin. That is to say when x = 0, y = 0.
Looking at these graphs, two can immediately be ruled out. Clearly A and D pass through the origin, and the gradient is constant because they are linear functions, so they are direct variations.
This leaves B and C. The graph of 1/x does not have a constant gradient, so any stretch of this graph (to y = k/x for some constant k) will similarly not be direct variation. Indeed there is a special name for this function, inverse proportion/variation. It appears both B and C are inverse proportion, however if I interpret B as y = (2/5)x instead, it is actually linear.
This leaves C as the odd one out.
I hope this helps you :)
The length of a curve <em>C</em> parameterized by a vector function <em>r</em><em>(t)</em> = <em>x(t)</em> i + <em>y(t)</em> j over an interval <em>a</em> ≤ <em>t</em> ≤ <em>b</em> is

In this case, we have
<em>x(t)</em> = exp(<em>t</em> ) + exp(-<em>t</em> ) ==> d<em>x</em>/d<em>t</em> = exp(<em>t</em> ) - exp(-<em>t</em> )
<em>y(t)</em> = 5 - 2<em>t</em> ==> d<em>y</em>/d<em>t</em> = -2
and [<em>a</em>, <em>b</em>] = [0, 2]. The length of the curve is then





Answer:
SCREEEEEEEEeEEEEeeEEeeEEEEEe
Step-by-step explanation: