The answer is smooth muscle, Hope this helped! Have a good day!
Answer: 10.048m/s
Explanation:
We know that the radius is r = 4.0m
And for rotating things, the tangential velocity (or the velocity of the end of the centrifuge arm) can be calculated as:
v = r*w
The period is T = 2.5s,
This means that if sin(w*t) describes this situation, we have that:
sin(w*t) = sin(w*(t + T))
and we know that:
sin(w*0) = 0
sin(w*(0 + T)) = Sin(w*T) = 0
this means that w*T = 2*pi
w = 2*pi/T = 2*pi/2.5s = (2*3.14)/2.5 s = 2.512 hz
Then the velocity can be calculated as
v = r*w = 4.0m*2.512hz = 10.048m/s
<span>Answer: The acceleration of 10 kg object is greater than that of 18 kg object.
Explanation:
According to Newton's Second law:
F = ma --- (A)
Let's find the acceleration for both 10 kg and 18 kg objects!
The net force on both of these masses = F = 20N
(1) Acceleration of 10 kg object
Mass = m = 10 kg
Plug in the values in equation (A):
20 = 10 * a
Acceleration = a = 2 m/s^2
(2) Acceleration of 18 kg object
Mass = m = 18 kg
Plug in the values in equation (A):
20 = 18 * a
Acceleration = a = 1.11 m/s^2
2 > 1.11; therefore, 10 kg object has the higher acceleration compared to the acceleration of the 18 kg object.</span>
Answer:
130m
Explanation:
You just have to multiply velocity by the time traveled:
100m/s * 1.3s = 130m!
The correct answer is:
Work is negative, the environment did work on the object, and the energy of the system decreases.
In fact, the work-energy theorem states that the work done by the system is equal to its variation of kinetic energy:

In this problem, the variation of kinetic energy
is negative (because the final velocity is less than the initial velocity), so the work is negative, and this means that the environment did work on the object, and its energy decreased.