1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marrrta [24]
3 years ago
9

A train having speed of 85 km/h takes 5 hours to travel from Kerala to Karnataka. Calculate the distance between Kerala and Karn

ataka
Physics
1 answer:
Morgarella [4.7K]3 years ago
6 0

Answer:

the distance between Kerala and Karnataka is 425 km.

Explanation:

Given;

speed of the train, u = 85 km/h

time taken for the train to travel from Kerala to Karnataka, t = 5 hours

The distance between Kerala and Karnataka is calculated as;

Distance = speed x time

Distance = 85 km/h  x  5 h

Distance = 425 km

Therefore, the distance between Kerala and Karnataka is 425 km.

You might be interested in
Using Excel, or some other graphing software, plot the values of y as a function of x. (You will not submit this spreadsheet. Ho
Evgesh-ka [11]

Answer:

a) > x<-c(1,2,3,4,5)

> y<-c(1.9,3.5,3.7,5.1,6)

> linearmodel<-lm(y~x)

And the output is given by:

> linearmodel

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept)            x  

      1.10         0.98  

b) y = 0.98 x +1.10

And if we compare this with the general model y = mx +b

We see that the slope is m= 0.98 and the intercept b = 1.10

Explanation:

Part a

For this case we have the following data:

x: 1,2,3,4,5

y: 1.9,3.5,3.7,5.1, 6

For this case we can use the following R code:

> x<-c(1,2,3,4,5)

> y<-c(1.9,3.5,3.7,5.1,6)

> linearmodel<-lm(y~x)

And the output is given by:

> linearmodel

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept)            x  

      1.10         0.98  

Part b

For this case we have the following trend equation given:

y = 0.98 x +1.10

And if we compare this with the general model y = mx +b

We see that the slope is m= 0.98 and the intercept b = 1.10

7 0
3 years ago
Elements are arranged in the periodic table based on various patterns. For example, the element magnesium (Mg) A. has a higher a
Sati [7]

The right answer is A just did the question.


7 0
3 years ago
How do you change the currents in a circuit
mel-nik [20]
-
Eddy Current Testing

Introduction
Basic Principles
History of ET
Present State of ET

The Physics
Properties of Electricity
Current Flow & Ohm's Law
Induction & Inductance
Self Inductance
Mutual Inductance
Circuits & Phase
Impedance
Depth & Current Density
Phase Lag

Instrumentation
Eddy Current Instruments
Resonant Circuits
Bridges
Impedance Plane
Display - Analog Meter

Probes (Coils)
Probes - Mode of Operation
Probes - Configuration
Probes - Shielding
Coil Design
Impedance Matching

Procedures Issues 
Reference Standards
Signal Filtering

Applications
Surface Breaking Cracks
SBC using Sliding Probes
Tube Inspection 
Conductivity 
Heat Treat Verification
Thickness of Thin Mat'ls
Thickness of Coatings

Advanced Techniques
Scanning
Multi-Frequency Tech.
Swept Frequency Tech.
Pulsed ET Tech.
Background Pulsed ET
Remote Field Tech.

Quizzes

Formulae& Tables
EC Standards & Methods
EC Material Properties
-






Current Flow and Ohm's Law

Ohm's law is the most important, basic law of electricity. It defines the relationship between the three fundamental electrical quantities: current, voltage, and resistance. When a voltage is applied to a circuit containing only resistive elements (i.e. no coils), current flows according to Ohm's Law, which is shown below.

I = V / R 

Where: 

I =

Electrical Current (Amperes)

V =

Voltage (Voltage)

R =

Resistance (Ohms)

    

Ohm's law states that the electrical current (I) flowing in an circuit is proportional to the voltage (V) and inversely proportional to the resistance (R). Therefore, if the voltage is increased, the current will increase provided the resistance of the circuit does not change. Similarly, increasing the resistance of the circuit will lower the current flow if the voltage is not changed. The formula can be reorganized so that the relationship can easily be seen for all of the three variables.

The Java applet below allows the user to vary each of these three parameters in Ohm's Law and see the effect on the other two parameters. Values may be input into the dialog boxes, or the resistance and voltage may also be varied by moving the arrows in the applet. Current and voltage are shown as they would be displayed on an oscilloscope with the X-axis being time and the Y-axis being the amplitude of the current or voltage. Ohm's Law is valid for both direct current (DC) and alternating current (AC). Note that in AC circuits consisting of purely resistive elements, the current and voltage are always in phase with each other.

Exercise: Use the interactive applet below to investigate the relationship of the variables in Ohm's law. Vary the voltage in the circuit by clicking and dragging the head of the arrow, which is marked with the V. The resistance in the circuit can be increased by dragging the arrow head under the variable resister, which is marked R. Please note that the vertical scale of the oscilloscope screen automatically adjusts to reflect the value of the current.

See what happens to the voltage and current as the resistance in the circuit is increased. What happens if there is not enough resistance in a circuit? If the resistance is increased, what must happen in order to maintain the same level of current flow?


4 0
3 years ago
Among the alkali earth metals, the tendency to react with other substances
padilas [110]
Answer D
In alkali earth metals reacrivity increases from top to bottom (opposite of b)
This is because as you go down, the electron shells increase by 1 shell. The farther away a shell is from the nucleus, the higher its tendency to react.
D is true because the more reactive an alkali metal is, the more vigorous the reaction will be with water.
4 0
2 years ago
Read 2 more answers
When was the most gravitational potential energy stored between the model and Earth? Assume that the model's mass did not change
Lyrx [107]

Answer:

As the ball falls from C to E, potential energy is converted to kinetic energy. The velocity of the ball increases as it falls, which means that the ball attains its greatest velocity, and thus its greatest kinetic energy

Explanation:

8 0
2 years ago
Other questions:
  • A viscoelastic polymer that can be assumed to obey the Boltzmann superposition principle is subjected to the following deformati
    13·1 answer
  • A 5 kg block of copper (specific heat capacity = 385 J/kg°C) at 20°C is given
    11·1 answer
  • Identify the procedure to determine a formula for self-inductance, or inductance for short. Using the formula derived in the tex
    13·1 answer
  • Which of the following is a conductor for electricity?
    8·1 answer
  • PLEASE HELP ME WITH THIS ONE QUESTION
    13·1 answer
  • What clouds are best associated with thunderstorms?
    5·1 answer
  • On the left is a drawing of what scientist Thomas Young demonstrated in the early nineteenth century when he conducted an experi
    14·1 answer
  • Write about
    9·1 answer
  • How do mathematical models help us learn about conditions inside the sun?
    5·1 answer
  • Help me on the question below please​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!