Answer:
52 tickets cost $10 and 18 tickets cost $12
Step-by-step explanation:
10x+12y=804. (1)
x+y=70. (2)
From (2)
x=70-y
Substitute x=70-y into (1)
10x+12y=804
10(70-y)+12y=804
700-10y+12y=804
700+2y=804
2y=804-700
2y=104
y=104/2
y=52
Recall
x+y=70
x+52=70
x=70-52
x=18
52 tickets cost $10 and 18 tickets cost $12
Answer:
Algorithm
Start
Int n // To represent the number of array
Input n
Int countsearch = 0
float search
Float [] numbers // To represent an array of non decreasing number
// Input array elements but first Initialise a counter element
Int count = 0, digit
Do
// Check if element to be inserted is the first element
If(count == 0) Then
Input numbers[count]
Else
lbl: Input digit
If(digit > numbers[count-1]) then
numbers[count] = digit
Else
Output "Number must be greater than the previous number"
Goto lbl
Endif
Endif
count = count + 1
While(count<n)
count = 0
// Input element to count
input search
// Begin searching and counting
Do
if(numbers [count] == search)
countsearch = countsearch+1;
End if
While (count < n)
Output count
Program to illustrate the above
// Written in C++
// Comments are used for explanatory purpose
#include<iostream>
using namespace std;
int main()
{
// Variable declaration
float [] numbers;
int n, count;
float num, searchdigit;
cout<<"Number of array elements: ";
cin>> n;
// Enter array element
for(int I = 0; I<n;I++)
{
if(I == 0)
{
cin>>numbers [0]
}
else
{
lbl: cin>>num;
if(num >= numbers [I])
{
numbers [I] = num;
}
else
{
goto lbl;
}
}
// Search for a particular number
int search;
cin>>searchdigit;
for(int I = 0; I<n; I++)
{
if(numbers[I] == searchdigit
search++
}
}
// Print result
cout<<search;
return 0;
}
$32,750.00 + $375.00 = $33,125.00
6% of that is $1,987.50 (33,125 x 0.06)
$1,987,50 + $33,125 + $50=
$35,162.50
1/2 of $8.50 is $4.25
1/4 of $4.20 is $1.05
$5.30 w/o taxes
$5.74 is your answer
Answer:
(x-6) (2x+1)
Step-by-step explanation:
1) move everything over to the left side, so subtract 11x and 6.
2x^2 -11x - 6 = 0
2)multiply 2(a term) with -6 (c term)
x^2 -11x -12
3) factor and find what multiples to -12 and adds up to -11. in this case its -12 and positive 1
(x-12) (x+1)
4) divide -12 and 1 by the original a term (2)
(x-6) (x+1/2)
5) move the denominator of 2 over to the x.
(x-6) (2x+1)