Answer:
8608.18 balloons
Explanation:
Hello! Let's solve this!
Data needed:
Enthalpy of propane formation: 103.85kJ / mol
Specific heat capacity of air: 1.009J · g ° C
Density of air at 100 ° C: 0.946kg / m3
Density of propane at 100 ° C: 1.440kg / m3
First we will calculate the propane heat (C3H8)
3000g * (1mol / 44g) * (103.85kJ / mol) * (1000J / 1kJ) = 7.08068 * 10 ^ 6 J
Then we can calculate the mass of the air with the heat formula
Q = mc delta T
m = Q / c delta T = (7.08068 * 10 ^ 6 J) / (1.009J / kg ° C * (100-25) ° C) =
m = 93566.96kg
We now calculate the volume of a balloon.
V = 4/3 * pi * r ^ 3 = 4/3 * 3.14 * 1.4m ^ 3 = 11.49m ^ 3
Now we calculate the mass of the balloon
mg = 0.946kg / m3 * 11.49m ^ 3 = 10.87kg
The amount of balloons is
93566.96kg / 10.87kg = 8608.18 balloons
a) The total pressure of the system is 1.79 atm
b) The mole fraction and partial pressure of hydrogen is 0.89 and 1.59 atm respectively
c) The mole fraction and the partial pressure of argon is 0.11 and 0.19 atm.
<h3>What is the total pressure?</h3>
We know tat we can be able to obtain the total pressure in the system by the use of the ideal gas equation. We would have from the equation;
PV = nRT
P = pressure
V = volume
n = Number of moles
R = gas constant
T = temperature
Number of moles of hydrogen = 14.2 g/2g = 7.1 moles
Number of moles of Argon = 36.7 g/40 g/mol
= 0.92 moles
Total number of moles = 7.1 moles + 0.92 moles = 8.02 moles
Then;
P = nRT/V
P = 8.02 * 0.082 * 273/100
P = 1.79 atm
Mole fraction of hydrogen = 7.1/8.02 = 0.89
Partial pressure of hydrogen = 0.89 * 1.79 atm
= 1.59 atm
Mole fraction of argon = 0.92 / 8.02
= 0.11
Partial pressure of argon = 0.11 * 1.79 atm
= 0.19 atm
Learn more about partial pressure:brainly.com/question/13199169
#SPJ1
Chemical property is the ability of a substance to react with other substances or to transform into other substances. The stability of a compound indicates how much it "prefers" to remain as such or to get transformed. Then the stability is a chemical property.