Answer:
3m/s
Explanation:
Data obtained from the question include:
Initial speed (s1) = 4 m/s
Final speed (S2) = 7m/s
Change in speed (ΔS)
ΔS = s2 — s1
ΔS = 7 — 4
ΔS = 3m/s
Therefore, the change in speed is 3m/s
Balanced Eqn
2
C
2
H
6
+
7
O
2
=
4
C
O
2
+
6
H
2
O
By the Balanced eqn
60g ethane requires 7x32= 224g oxygen
here ethane is in excess.oxygen will be fully consumed
hence
300g oxygen will consume
60
⋅
300
224
=
80.36
g
ethane
leaving (270-80.36)= 189.64 g ethane.
By the Balanced eqn
60g ethane produces 4x44 g CO2
hence amount of CO2 produced =
4
⋅
44
⋅
80.36
60
=
235.72
g
and its no. of moles will be
235.72
44
=5.36 where 44 is the molar mass of Carbon dioxide
hope this helps
Most animals obtain their nutrients by the consumption of other organisms. At the cellular level, the biological molecules necessary for animal function are amino acids, lipid molecules, nucleotides, and simple sugars. However, the food consumed consists of protein, fat, and complex carbohydrates.
Shaking a phone cord, strumming a guitar string, playing a trumpet
Answer:
2. The metal would lose one electrons and the non metal would gain one electrons
Explanation:
An atom of a certain element reacts with the atoms of other elements in order to fullfill its outermost shell (called valence shell).
We notice the following:
- The elements in Group 1 (which are metals) have only 1 electron in their valence shell
- The elements in Group 17 (which are non-metals) have 1 vacancy (lack of electron) in their valence shell
This means that in order for both an atom of group 1 and an atom of group 17 to fullfill the valence shell, they have to:
- The atom in group 1 has to give away its only electron of the valence shell
- The atom in group 17 has to gain one electron in order to fullfill the shell
Therefore, the correct option is
2. The metal would lose one electrons and the non metal would gain one electrons