<span> first, write the equation of the parabola in the required form: </span>
<span>(y - k) = a·(x - h)² </span>
<span>Here, (h, k) is given as (-1, -16). </span>
<span>So you have: </span>
<span>(y + 16) = a · (x + 1)² </span>
<span>Unfortunately, a is not given. However, you do know one additional point on the parabola: (0, -15): </span>
<span>-15 + 16 = a· (0 + 1)² </span>
<span>.·. a = 1 </span>
<span>.·. the equation of the parabola in vertex form is </span>
<span>y + 16 = (x + 1)² </span>
<span>The x-intercepts are the values of x that make y = 0. So, let y = 0: </span>
<span>0 + 16 = (x + 1)² </span>
<span>16 = (x + 1)² </span>
<span>We are trying to solve for x, so take the square root of both sides - but be CAREFUL! </span>
<span>± 4 = x + 1 ...... remember both the positive and negative roots of 16...... </span>
<span>Solving for x: </span>
<span>x = -1 + 4, x = -1 - 4 </span>
<span>x = 3, x = -5. </span>
<span>Or, if you prefer, (3, 0), (-5, 0). </span>
Answer:
Option (d) is correct.

Step-by-step explanation:
Given : Expression 
We have to write a simplified form of the given expression 
Consider the given expression 
![\mathrm{Apply\:radical\:rule\:}\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%5C%3A%7D%5Csqrt%5Bn%5D%7Bab%7D%3D%5Csqrt%5Bn%5D%7Ba%7D%5Csqrt%5Bn%5D%7Bb%7D%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200%2C%5C%3Ab%5Cge%200)

Factor 10000 as 
![\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%7D%3A%5Cquad%20%5Csqrt%5Bn%5D%7Ba%5En%7D%3Da)

also, ![\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^m}=a^{\frac{m}{n}},\:\quad \mathrm{\:assuming\:}a\ge 0](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%5C%3A%7D%5Csqrt%5Bn%5D%7Ba%5Em%7D%3Da%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200)
We have,

Thus, 
Answer:
A) 45
Step-by-step explanation:
P(green) = 6/20
6/20 = x/150
20x = 900
x = 45
16:6 is an equivalent ratio