Given is the specific heat of water equal to 4.18 Joule per gram per *C.
This means to raise the temperature of 1 g of water by 1 degree Celsius we need 4.18 joule of energy.
Now, look at the question. We are asked that how much amount of energy would be required to raise the temperature of 25 g of water by (54-50) = 4 degree celsius.
To do so we have formula
Q = m C (temperature difference)
Have a look at pic for answer
Li+ has a smaller ionic radius than K+
and smaller molecules have more collisions/interactions between each other
<h3>What is ion-solvent interaction ?</h3>
In the case of ion-solvent interactions, the state in which the interac-tions exist is an obvious one; it is the situation in which ions are inside the solvent.
- Ions are charged particles, and charges interact with other charges. So there will also be ion-ion, as well as ion-solvent, interactions in the solution.
- In the process of solvation, ions are surrounded by a concentric shell of solvent. Solvation is the process of reorganizing solvent and solute molecules into solvation complexes.
Learn more about Ion-solvent interaction here:
brainly.com/question/21307101
#SPJ4
Answer:
Explanation:
In weight/volume (w/v) terms,
1 ppm = 1g m-3 = 1 mg L-1 = 1 μg mL-1
200 mL = 0.2 L
15 / 0.2 mg L-1 =75 ppm
<u>Answer:</u>
<em>4.5 L water we have in litres (L).</em>
<em><u></u></em>
<u>Explanation:</u>

where
= Final T - Initial T
Q is the heat energy in calories
c is the specific heat capacity (for water 1.0 cal/(g℃))
m is the mass of water
Plugging in the values

So,
Volume of water = mass/density

=4.5 L (Answer)