The Law of Conservation of Mass<span> states that </span>matter <span>can neither be created nor destroyed in a chemical reaction.</span>
Answer: 1.32
Explanation:
First, we must obtain the molar mass of HBr. After that, we try to obtain the concentration of the hydrobromic acid from the formula n=CV since the volume of solution and mass of acid was provided. Recall that n=m/M. If the concentration of acid is thus obtained, we make use of the fact that the concentration of H+ in the acid is equal to the molar concentration of HBr to obtain the pH. The pH is the negative logarithm of the concentration we obtained in the initial step.
Answer:
Static Electricity
Explanation:
Most likely, in the room, Jim was building up static electricity by friction with the floor, which he released upon contact with a metal object.
Answer:
Na₂₆F₁₁
Explanation:
We find the moles of the substance assuming 100 g of the substance is present. Why do we take 100 g? Because then the percent of sodium/fluorine, would be the g of sodium/fluorine respectively:
74.186 g Sodium | 1 mol Sodium/23 g => 3.2255 mol Na
25.814 g Fluorine | 1 mol Fluorine/19 g => 1.3586 mol F
Divide each by smallest number of moles:
3.2255/1.3586 = 2.37
1.3586/1.3586 = 1
Multiply by common number to get a smallest whole number:
2.37*11 = 26,
1*11 = 11
The empirical formula is Na₂₆F₁₁
You have 0.50 mol of NH3 and 0.20 mol of NH4+ to start (NH4Cl dissolves completely), given the molarity and 1.0 L solution.
30.0 mL of 1.0 M HCl is 0.0300 mol of HCl. This will react with the NH3 to produced 0.030 mol of NH4+.
You now have 0.47 mol NH3 and 0.23 mol NH4+. Now use the Henderson-Hasselbach equation to calculate your pH. The equation says to use concentration of acid and base, but you can just use the moles of them because it doesn’t make a difference.
pH = pKa + log(base/acid)
pKa = 14 - pKb = 14 - 4.75 = 9.25
pH = 9.25 + log(0.47/0.23) = 9.56