Answer:
Remains the same
Explanation:
The speed of waves of higher and lower frequency both will be same.
the speed of sound in a medium is constant and independent of it's frequency. Moreover, when the frequency changes wavelength changes accordingly, such that their product remains constant.
we know that
υ×λ = constant = velocity
υ= frequency
λ= wavelength.
The range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
We have current carrying wire in a form of a circle placed in a uniform magnetic field.
We have to the range of potential energies of the wire-field system for different orientations of the circle.
<h3>What is the formula to calculate the Magnetic Potential Energy?</h3>
The formula to calculate the magnetic potential energy is -
U = M.B = MB cos 
where -
M is the Dipole Moment.
B is the Magnetic Field Intensity.
According to the question, we have -
U = M.B = MB cos 
We can write M = IA (I is current and A is cross sectional Area)
U = IAB cos 
U = Iπ
B cos 
For
= 0° →
U(Max) = MB cos(0) = MB = Iπ
B = 5 × π ×
× 3 ×
=
375 π x
.
For
= 90° →
U = MB cos (90) = 0
For
= 180° →
U(Min) = MB cos(0) = - MB = - Iπ
B = - 5 × π ×
× 3 ×
=
- 375 π x
.
Hence, the range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
To solve more questions on Magnetic potential energy, visit the link below-
brainly.com/question/13708277
#SPJ4
Answer:
7800kg/m³
Explanation:
Density of iron in CGS unit is 7.8 g/cm3. Its density is SI is
Given the density of iron = 7.8 g/cm3.
The SI units must be in kg/m³
7.8g = 7.8/1000 kg
7.8g = 0.0078kg
1cm³ = 0.000001m³
7.8g/cm³
= 0.0078/0.000001 kg/m³
= 7800kg/m³
Hence the density in SI unit is 7800kg/m³
Answer:
30 V
Explanation:
Given that:
The uniform electric field = 50 N/C
Voltage = 80 V
distance = 1.0 m
The potential difference of the electric field = Δ V
E_d = V₁ - V₂
50 × 1 = 80V - V₂
50 - 80 V = - V₂
-30 V = - V₂
V₂ = 30 V
Answer:
in the lab
Explanation:
cause that is where scientist spend their time doing research ...