The frequency of note C3 is 131
.
<u>Explanation:</u>
Frequency is the measure of repetition of same thing a certain number of times. So frequency is inversely proportional to the wavelength. As wavelength is distance between two successive crests or troughs in a sound wave.
And frequency is the completion of number of cycles in a given time in sound waves. The frequency and wavelength are inversely proportional to each other with velocity of sound being the proportionality constant.
Thus, here the speed of sound is given as 343 m/s, the wavelength of the note is also given as 2.62 m, then frequency will be as follows:

Thus,

So the frequency of note C3 is 131
.
The acceleration of the particle at time t is:

The velocity of the particle at time t is given by the integral of the acceleration a(t):

and the position of the particle at time t is given by the integral of the velocity v(t):

Assuming the particle starts from position x(0)=0 at t=0, the distance the particle covers in the first t=2 seconds can be found by substituting t=2 s in the equation of x(t):
Answer:
the answer is C
Explanation:
The car, first is at rest and if you don't accelerate it won't move. When to hit the gas it will accelerate from rest
Let the Blaise runs for time "t" to complete the race
so the total distance he moved is given by

Now Issac runs for time t = "t - 2*60"
because it took rest for 2 minutes

now it is given that Blaise wins by 10 m distance




now the distance moved by Blaise is given by

Answer:
44.13015
Explanation:
use the 9.8067 newtons to 1 kg conversion