Answer:
1/2= 5/10
5/10 - 3/10 = 2/10 or 1/5
so planet X is 1/5 of a light-year closer
Step-by-step explanation:
Answer:
Unbiased
Step-by-step explanation:
If b^ is equal to B this means that it is an unbiased estimator. When there is an absence of bias, we have an unbiased estimator. As an unbiased estimator it gives accurate information most of the time. The result it gives is not over estimated and also it is not underestimated.
Expected value = true value
Parameter estimates are correct on average
Thank you
Answer: the probability that exactly two of the next five people who apply to that university get accepted is 0.23
Step-by-step explanation:
We would number of people that applies for admission at the university and gets accepted. The formula is expressed as
P(x = r) = nCr × p^r × q^(n - r)
Where
x represent the number of successes.
p represents the probability of success.
q = (1 - p) represents the probability of failure.
n represents the number of trials or sample.
From the information given,
p = 0.6
q = 1 - p = 1 - 0.6
q = 0.4
n = 5
the probability that exactly two of the next five people who apply to that university get accepted is
P(x = 2) = 5C2 × 0.6^2 × 0.4^(5 - 2)
P(x = 2) = 10 × 0.36 × 0.064
P(x = 2) = 0.23
Answer:
D) 0 = 2(x + 5)(x + 3)
Step-by-step explanation:
Which of the following quadratic equations has no solution?
We have to solve the Quadratic equation for all the options in other to get a positive value as a solution for x.
A) 0 = −2(x − 5)2 + 3
0 = -2(x - 5) × 5
0 = (-2x + 10) × 5
0 = -10x + 50
10x = 50
x = 50/10
x = 5
Option A has a solution of 5
B) 0 = −2(x − 5)(x + 3)
Take each of the factors and equate them to zero
-2 = 0
= 0
x - 5 = 0
x = 5
x + 3 = 0
x = -3
Option B has a solution by one of its factors as a positive value of 5
C) 0 = 2(x − 5)2 + 3
0 = 2(x - 5) × 5
0 = (2x -10) × 5
0 = 10x -50
-10x = -50
x = -50/-10
x = 5
Option C has a solution of 5
D) 0 = 2(x + 5)(x + 3)
Take each of the factors and equate to zero
0 = 2
= 0
x + 5 = 0
x = -5
x + 3 = 0
x = -3
For option D, all the values of x are 0, or negative values of -5 and -3.
Therefore the Quadratic Equation for option D has no solution.