The answer is D. time really does pass more slowly in a rest frame of reference relative to a frame of reference that is moving
5 What is the angular displacement at the end of the 25-mm-diameter shaft and the linear displacement of point A of Figure P5.5
<h3>What is
displacement ?</h3>
A displacement is a vector in geometry and mechanics that has a length equal to the shortest distance between a point P's initial and final positions. It calculates the length and angle of the net motion, or total motion, in a straight line from the starting point to the destination of the point trajectory. The translation that links the starting point and the ending point can be used to spot a displacement.
The final location xf of a point relative to its beginning position xi, or a relative position (derived from the motion), is another way to express a displacement. The difference between the end and beginning positions can be used to define the equivalent displacement vector
To learn more about displacement from the given link:
brainly.com/question/321442
#SPJ4
To answer this problem, we will use the equations of motions.
Part (a):
For the ball to start falling back to the ground, it has to reach its highest position where its final velocity will be zero.
The equation that we will use here is:
v = u + at where
v is the final velocity = 0 m/sec
u is the initial velocity = 160 m/sec
a is acceleration due to gravity = -9.8 m/sec^2 (the negative sign is because the ball is moving upwards, thus, its moving against gravity)
t is the time that we want to find.
Substitute in the equation to get the time as follows:
v = u + at
0 = 160 - 9.8t
9.8t = 160
t = 160/9.8 = 16.3265 sec
Therefore, the ball would take 16.3265 seconds before it starts falling back to the ground
Part (b):
First, we will get the total distance traveled by the ball as follows:
s = 0.5 (u+v)*t
s = 0.5(160+0)*16.3265
s = 1306.12 meters
The equation that we will use to solve this part is:
v^2 = u^2 + 2as where
v is the final velocity we want to calculate
u is the initial velocity of falling = 0 m/sec (ball starting falling when it reached the highest position, So, the final velocity in part a became the initial velocity here)
a is acceleration due to gravity = 9.8 m/sec^2 (positive as ball is moving downwards)
s is the distance covered = 1306.12 meters
Substitute in the above equation to get the final velocity as follows:
v^2 = u^2 + 2as
v^2 = (0)^2 + 2(9.8)(1306.12)
v^2 = 25599.952 m^2/sec^2
v = 159.99985 m/sec
Therefore, the velocity of the ball would be 159.99985 m/sec when it hits the ground.
A conductor that is conducting current generates a magnetic field everywhere around it. This magnetic field exerts force on the compass's magnetic needle, causing the needle to deviate.
Definition of Maxwell's rule
A current-conducting conductor creates a magnetic field everywhere around it. The magnetic needle of the compass experiences force from this magnetic field, which causes the needle to veer.
Equation for deflection
We have so far established that the total flux of electric field out of a closed surface is just the total enclosed charge multiplied by 1/ε0, ∫→E⋅d→A=q/ε0. This is Maxwell's first equation. It represents completely covering the surface with a large number of tiny patches having areas d→A.
To learn more about magnetic field refer : brainly.com/question/24761394
#SPJ4
Answer:
(a) -1.18 m/s
(b) 0.84 m/s
Explanation:
(a)
The total linear momentum before the lumberjack begins to move is zero because all parts of the system are at res
From the law of conservation of momentum
m1v1+m2v2=0 hence m1v1=-m2v2 where m1 is mass of lumberjack, v1 is velocity of lumberjeck, m2 is mass of floating log, v2 is velocity of the floating log.
Substituting M1 for 103 Kg, V1 for 2.93 m/s, M2 for 255 Kg into the above equation we obtain
103Kg*2.93 m/s=-255Kg*V2
V2=-(103 kg*2.93 m/s)/255=-1.183490196 m/s
Hence V2=-1.18 m/s
(b)
For the second log
V(M1+M2)=m1v1 where V is the common velocity
V(103 Kg+255 Kg)=103 Kg*2.93 m/s
V=(103 Kg*2.93 m/s)/(103 Kg+255 Kg)=0.842988827 m/s
V=0.84 m/s