I think your answer would be (D) microscope with a video camera
Hope i helped!
Answer:
83,900 J
Explanation:
First, find the acceleration:
F = ma
1150 N = (1600 kg) a
a = 0.719 m/s²
Now find the final velocity.
Given:
Δx = 45.8 m
v₀ = 6.25 m/s
a = 0.719 m/s²
Find: v
v² = v₀² + 2aΔx
v² = (6.25 m/s)² + 2 (0.719 m/s²) (45.8 m)
v = 10.2 m/s
Now find the final KE:
KE = ½ mv²
KE = ½ (1600 kg) (10.2 m/s)²
KE = 83,920 J
Rounded to three significant figures, the final kinetic energy is 83,900 J.
Explanation:
(10) Mass of a soccer player, m = 0.42 kg
Initial speed, u = 0
Final speed, v = 32.5 m/s
Time, t = 0.21 s
We need to find the force that sends soccer ball towards the goal.
Force, F = ma

So, 65 N of force soccer ball sends towards the goal.
(11) Mass of the satellite, m = 72,000 kg
Initial speed, u = 0 m/s
Final speed, v = 0.63 m/s
Time, t = 1296 s
We need to find the force is exerted by the rocket on the satellite.
Force, F = ma

So, 35 N of the force is exerted by the rocket on the satellite.
Hence, this is the required solution.
Explanation:
Given:
v₀ = 0 m/s
a = 2.50 m/s²
t = 4 s
Find: v
v = at + v₀
v = (2.50 m/s²) (4 s) + 0 m/s
v = 10 m/s
<span>A solution is oversaturated with solute. The thing that could be done to decrease the oversaturation is to add more solvent in order to decrease the concentration of the solute. You can also increase the temperature to increase solubility of the solute. Hope this answers the question.</span>