Answer:
This can be translated to:
"find the electrical charge of a body that has 1 million of particles".
First, it will depend on the charge of the particles.
If all the particles have 1 electron more than protons, we will have that the charge of each particle is q = -e = -1.6*10^-19 C
Then the total charge of the body will be:
Q = 1,000,000*-1.6*10^-19 C = -1.6*10^-13 C
If we have the inverse case, where we in each particle we have one more proton than the number of electrons, the total charge will be the opposite of the one of before (because the charge of a proton is equal in magnitude but different in sign than the charge of an electron)
Q = 1.6*10^-13 C
But commonly, we will have a spectrum with the particles, where some of them have a positive charge and some of them will have a negative charge, so we will have a probability of charge that is peaked at Q = 0, this means that, in average, the charge of the particles is canceled by the interaction between them.
Answer:
The answer to your question is: V2 = 1 l
Explanation:
Data
P1 = 200 kPa
P2 = 300 kPa
V1 = 1.5 l
V2 = ?
Formula
P1V1 = P2V2
V2 = (P1V1) / P2
V2 = (200 x 1.5) / 300
V2 = 1 l
Answer:
A. The project's energy costs will decrease
Explanation:
Since the project is located in an area with a demand-response program and on a site that has enough room for a wind-turbine to allow for on-site renewable energy.
Hence, the project's energy costs will decrease very well because it's implementing both of these strategies;
- Area with demand-response program.
- On-site renewable energy.
Answer:
Rate = vmax k3/k2+k3
Explanation:
The rate of reaction when the enzyme is saturated with substrate is the maximum rate of reaction, is referred to as Vmax.
This is usually expressed as the Km ie. Michaelis constant of the enzyme, an inverse measure of affinity. For practical purposes, Km is the concentration of substrate which permits the enzyme to achieve half Vmax.
Please kindly check attachment for the step by step solution of the given problem.