Bigger change in velocity because the object is lighter than the object with more mass so it would move further (sorry it’s not a great explanation)
<span>D transformed into gravitational potential energy.</span>
Answer:
2. displacement is maximum
Explanation:
This makes sense as the spring is stretched the farthest at this point
F = kx
The largest force makes the largest acceleration.
<span>6.6 degrees C
Let's model the student as a 125 w furnace that's been operating for 11 minutes. So
125 w * 11 min = 125 kg*m^2/s^3 * 11 min * 60 s/min = 82500 kg*m^2/s^2 = 82500 Joule
So the average kinetic energy increase of each gas molecule is
82500 J / 6.0x10^26 = 1.38x10^-22 J
Now the equation that relates kinetic energy to temperature is:
E = (3/2)Kb*Tk
E = average kinetic energy of the gas particles
Kb = Boltzmann constant (1.3806504Ă—10^-23 J/K)
Tk = Kinetic temperature in Kelvins
Notice the the energy level of the gas particles is linear with respect to temperature. So we don't care what the original temperature is, we just need to know by how much the average energy of the gas particles has increased by.
So let's substitute the known values and solve for Tk
E = (3/2)Kb*Tk
1.38x10^-22 J = (3/2)1.3806504Ă—10^-23 J/K * Tk
1.38x10^-22 J = 2.0709756x10^-23 J/K * Tk
6.64 K = Tk
Rounding to 2 significant digits gives 6.6K. So the temperature in the room will increase by 6.6 degrees K or 6.6 degrees C, or 11.9 degrees F.</span>
Answer:
The location of helicopter is behind the packet.
Explanation:
As the packet also have same horizontal velocity as same as the helicopter, and also it has some vertical velocity as it hits the ground.
The horizontal velocity remains same as there is no force in the horizontal direction. The vertical velocity goes on increasing as acceleration due to gravity acts.
So, the helicopter is behind the packet.