Answer:
The frictional force acting on the block is 14.8 N.
Explanation:
Given that,
Weight of block = 37 N
Coefficients of static = 0.8
Kinetic friction = 0.4
Tension = 24 N
We need to calculate the maximum friction force
Using formula of friction force

Put the value into the formula


So, the tension must exceeds 29.6 N for the block to move
We need to calculate the frictional force acting on the block
Using formula of frictional force

Put the value in to the formula


Hence, The frictional force acting on the block is 14.8 N.
<span>Since Florence is east, then Florence is 5 miles due west of Paris (30-25). Then, using the Pythagorean theorem with 45 miles as the length and 5 miles as the width, the square root of (45^2+5^2) is 45.277 miles.</span>
Work is done when spring is extended or compressed. Elastic potential energy is stored in the spring. Provided inelastic deformation has not happened, the work done is equal to the elastic potential energy stored.
B, heat, is the correct answer. Heat is represented by a capital q in thermodynamic equations.
We can rearrange the mirror equation before plugging our values in.
1/p = 1/f - 1/q.
1/p = 1/10cm - 1/40cm
1/p = 4/40cm - 1/40cm = 3/40cm
40cm=3p <-- cross multiplication
13.33cm = p
Now that we have the value of p, we can plug it into the magnification equation.
M=-16/13.33=1.2
1.2=h'/8cm
9.6=h'
So the height of the image produced by the mirror is 9.6cm.