Given data
*The given 4th harmonic frequency is 31.5 Hz
The fundamental frequency is calculated as

Hence, the fundamental frequency is 7.875 Hz
Saying no and not throwing fits and manners.
The hand saw would involve more work because it takes more time and effort.
Answer:
The kinetic energy of the particle will be 12U₀
Explanation:
Given that,
A particle is launched from point B with an initial velocity and reaches point A having gained U₀ joules of kinetic energy.
Constant force = 12F
According to question,
The kinetic energy is
....(I)
Constant force = 12F
A resistive force field is now set up ,
Resistive force is given by,

When the particle moves from point B to point A then,
We need to calculate the kinetic energy
Using formula for kinetic energy

Put the value of 

Now, from equation (I)

Hence, The kinetic energy of the particle will be 12U₀.
Answer:
a. 
b.
must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
is the time taken to stop after braking
Explanation:
Given:
- speed of leading car,

- speed of lagging car,

- distance between the cars,

- deceleration of the leading car after braking,

a.
Time taken by the car to stop:

where:
, final velocity after braking
time taken


b.
using the eq. of motion for the given condition:

where:
final velocity of the chasing car after braking = 0
acceleration of the chasing car after braking

must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
time taken by the chasing car to stop:


is the time taken to stop after braking