They all have a special way in their age how they want to get taught things but there abilities make them special
Answer:
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Explanation:
For this problem let's use Newton's second law applied to each body
Body A
X axis
T = m_A a
Axis y
N- W_A = 0
Body B
Vertical axis
W_B - T = m_B a
In the reference system we have selected the direction to the right as positive, therefore the downward movement is also positive. The acceleration of the two bodies must be the same so that the rope cannot tension
We write the equations
T = m_A a
W_B –T = M_B a
We solve this system of equations
m_B g = (m_A + m_B) a
a = m_B / (m_A + m_B) g
In this initial case
m_A = M
m_B = M
a = M / (1 + 1) M g
a = ½ g
Let's find the tension
T = m_A a
T = M ½ g
T = ½ M g
Now we change the mass of the second block
m_B = 2M
a = 2M / (1 + 2) M g
a = 2/3 g
We seek tension for this case
T’= m_A a
T’= M 2/3 g
Let's look for the relationship between the tensions of the two cases
T’/ T = 2/3 M g / (½ M g)
T’/ T = 4/3
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Explanation:
First, find the velocity of the projectile needed to reach a height h when fired straight up.
Given:
Δy = h
v = 0
a = -g
Find: v₀
v² = v₀² + 2aΔy
(0)² = v₀² + 2(-g)(h)
v₀ = √(2gh)
Now find the height reached if the projectile is launched at a 45° angle.
Given:
v₀ = √(2gh) sin 45° = √(2gh) / √2 = √(gh)
v = 0
a = -g
Find: Δy
v² = v₀² + 2aΔy
(0)² = √(gh)² + 2(-g)Δy
2gΔy = gh
Δy = h/2
Answer:
Amount of work done by Joanne = 80 joule
Explanation:
Given:
Displacement of ball = 2 meters
Force applied = 40 newtons
Find:
Amount of work done by Joanne
Computation;
Work done = Force applied x Displacement
Amount of work done by Joanne = Force applied x Displacement of ball
Amount of work done by Joanne = 40 x 2
Amount of work done by Joanne = 80 joule