I am pretty sure that according to the<span> information represened above, we can determine the car's </span><span>speed. It is usual thing in physics tasks and when we are provided with such values, we can immediately reveal the characteristic of the speed. Hope it helps!</span>
Answer:
Explanation:
The hydrosphere represents the total amount of water on earth. Soil water is part of the hydrosphere.
The lithosphere represents the varieties of rocks present on the planet, including their weathered part which is the soil.
The atmosphere represents the different gas layers surrounding the earth.
The biosphere represents the portion of the earth that supports life.
<em>When soil water moves into the tree through the roots of the tree, the hydrosphere, the lithosphere and the biosphere are interacting all together. When the some of the water taken in is released to the atmosphere as vapor through evapotranspiration, it represents an interaction with the atmosphere.</em>
Complete Question:
Two small objects each with a net charge of Q (where Q is a positive number) exert a force of magnitude "F" on each other. We
replace one of the objects with another whose net charge is 4Q. The original magnitude of the force on the Q charge was "F"; what is the magnitude of the force on the Q charge now?
Answer:
4 F₀
Explanation:
Assuming that we can treat to both objects as point charges, we can find the force "F" that one charge exerts upon the other applying Coulomb´s law, as follows:
F₀ = K*Q₀² / r₁₂²
If we replace one of the charges by one with a 4Q₀ charge, the new value of F will be as follows:
F₁ = K*Q₀*4Q₀ / r₁₂² =( K*Q₀² / r₁₂²)* 4 = 4* F₀
This value is reasonable, as the electrostatic force is a linear - type one, so it is possible to use the superposition principle (we can get the force exerted by one charge on another without considering the ones due to another charges)
The biggest thing you're doing wrong is ignoring the units
when you're working with the quantities.
Now let's look at the rest of the problem:
The formula you used is correct:
Net flux through the surface = (net charge inside) / ε₀
and ε₀ = 8.85 x 10⁻¹² farad/meter.
What's the net charge inside the surface in this problem ?
It's (5.85 x 10⁷ electrons) x (the charge on each electron)
= (5.85 x 10⁷ electrons) x (-1.6 x 10⁻¹⁹ coulomb/electron)
= -9.36 x 10⁻¹² coulomb .
Finally, (net charge inside) / ε₀
= (-9.36 x 10⁻¹² coulomb) / (8.85 x 10⁻¹² farad/meter)
= -1.058 newton-m²/coulomb .
The sign and the significant figures in your answer are correct, so
we can see that you know what you're doing. The only thing left is
the order of magnitude. You most likely took one of the negative
exponents and made it positive. You got an answer that's 10²² too
small. Big deal. You could claim "that's close", and see whether you
can convince a teacher.
Answer:
Positive velocity and negative acceleration
Explanation:
An object moving in the positive direction has a positive velocity.
An object that's slowing down while moving in the positive direction has a negative acceleration.