20 ohms in parallel with 16 ohm= 8.89
20x16/20+16. Product over sum
Answer:
Magnitude of the net force on q₁-
Fn₁=1403 N
Magnitude of the net force on q₂+
Fn₂= 810 N
Magnitude of the net force on q₃+
Fn₃= 810 N
Explanation:
Look at the attached graphic:
The charges of the same sign exert forces of repulsion and the charges of opposite sign exert forces of attraction.
Each of the charges experiences 2 forces and these forces are equal and we calculate them with Coulomb's law:
F= (k*q*q)/(d)²
F= (9*10⁹*3*10⁻⁶*3*10⁻⁶)(0.01)² =810N
Magnitude of the net force on q₁-
Fn₁x= 0
Fn₁y= 2*F*sin60 = 2*810*sin60° = 1403 N
Fn₁=1403 N
Magnitude of the net force on q₃+
Fn₃x= 810- 810 cos 60° = 405 N
Fn₃y= 810*sin 60° = 701.5 N

Fn₃ = 810 N
Magnitude of the net force on q₂+
Fn₂ = Fn₃ = 810 N
In order to design an experiment, you need a hypothesis about the scientific question you are trying to answer.
The electrical force between these two charges remains the
same. In coulomb’s law, it states that the magnitude of two charges (product of
two charges) is inversely proportional to the square of the distance. Since both
the magnitude and the distance are halved, therefore, the change in both quantities
will have no effect in the value of electrical force.
The answer is archimedes principle