Sodium chloride, NaCl, is formed when a sodium atom transfers its electron to a chlorine atom. The difference in charge between the two atoms creates a(n) electrostatic attraction that bonds them together.
Gap junctions in the intercalated discs allow impulses to be spread across the heart more quickly. This is because gap junctions allow particles/signals to pass through, thus making cells with gap junctions more able to interact.
One more thing—you posted this in the physics section rather than biology.
14 ms is required to reach the potential of 1500 V.
<u>Explanation:</u>
The current is measured as the amount of charge traveling per unit time. So the charge of electrons required for each current is determined as the product of current with time.

As two different current is passing at two different times, the net charge will be the different in current. So,

The electric voltage on the surface of cylinder can be obtained as the ratio of charge to the radius of the cylinder.

Here
, q is the charge and R is the radius. As
and R =17 cm = 0.17 m, then the voltage will be

The time is required to find to reach the voltage of 1500 V, so


So, 14 ms is required to reach the potential of 1500 V.