Answer:
Using the data in the table scientists, students, and others that are familiar with the periodic table can extract information concerning individual elements. For instance, a scientist can use carbon's atomic mass to determine how many carbon atoms there are in a 1 kilogram block of carbon.
Explanation:
HOPE THIS HELPS LIKE AN RATE PLZ
Answer:
A chain reaction will be sustained in a sub-critical mass.
Explanation:
Hope this helps!
If not, I am sorry.
Answer:
The man is on the verge of having a heart attack or a stroke.
Explanation:
If he has a family history of coronary (heart) disease, it means it could normally affect. Normally here means without anything aggravating it. It's already in his lineage so he could have it.
Now, he's past middle age - he's 45. He's past the growing stages of life. His organs are fully developed herefore.
Now also, he suffers from Type 2 diabetes. Although this is sometimes milder than Type 1 diabetes, it increases the risk of having a heart disease or a stroke!
Soda, especially sweetened one, is not to be taken too often because it can cause Diabetes Mellitus. For a diabetes patient, this should be a "no-go-area". Taking this constantly (everyday at work) will now put this 45-year-old man in harm's way.
He is no more at risk of having complications but already on the path to a heart disease or a stroke.
Answer:
a) 3000 Hz;
b) 30 dB;
c) 1000 times.
Explanation:
a) From the human audiogram given on the figure below the black line represents the threshold for hearing the sound at each frequency. We see that the least intensity is necessary for the frequency of about 3000 Hz.
b) Using the same audiogram we see that we would need the sound of the intensity of about 30dB.
c) The least perceptible sound at 1000 Hz must be 0dB while at 100 Hz it is 30dB. These are logarithmic quantities. To transform them to the linear quantities we use the formula

where
is the hearing threshold at 1000 Hz.
Therefore we have the following

is the threshold at 1000Hz and
is the threshold at 100Hz.
By exponentiating we have

Now dividing these two equations we get

Therefore, the least perceptible sound at 100Hz is 1000 times more intense than the least perceptible sound at 1000Hz.
Note: I got these values unisng the audiogram that is attached here. The one that you have might be slightly different and might yield different answers.