Answer:
F = 4000 N
Explanation:
given,
mass of rocket (M)= 5000 Kg
10 Kg gas burns at speed (m)= 4000 m/s
time = 10 s
average force = ?
at the end the rocket is at rest
by conservation of momentum
M v + m v' = 0
5000 x v - 10 x 4000 = 0
5000 v = 40000
v = 8 m/s
speed of rocket = 8 m/s
now,
we know
change in momentum = F x Δ t


F = 4000 N
Hence, the average force applied to the rocket is equal to F = 4000 N
Answer:
The duration is ![T =72 \ years /tex]Explanation:From the question we are told that The distance is [tex]D = 35 \ light-years = 35 * 9.46 *10^{15} = 3.311 *10^{17} \ m](https://tex.z-dn.net/?f=T%20%20%3D72%20%5C%20%20years%20%2Ftex%5D%3C%2Fp%3E%3Cp%3EExplanation%3A%3C%2Fp%3E%3Cp%3EFrom%20the%20question%20we%20are%20told%20that%20%3C%2Fp%3E%3Cp%3E%20%20%20%20The%20%20distance%20is%20%20%5Btex%5DD%20%20%3D%20%2035%20%5C%20light-years%20%3D%2035%20%2A%20%209.46%20%2A10%5E%7B15%7D%20%3D%203.311%20%2A10%5E%7B17%7D%20%5C%20%20m%20)
Generally the time it would take for the message to get the the other civilization is mathematically represented as

Here c is the speed of light with the value 
=> 
=> 
converting to years



Now the total time taken is mathematically represented as

=> 
=> [tex]T =72 \ years /tex]
Incandescent light is a glowing white light produced by heat. An incandescent light bulb works by heating a filament in the bulb. Fluorescent light is a bright light produced by electricity flowing through a tube filled with ionized gas. Fluorescent light bulbs are more energy-efficient than incandescent bulbs
Answer:
The explosive force experienced by the shell inside the barrel is 23437500 newtons.
Explanation:
Let suppose that shells are not experiencing any effect from non-conservative forces (i.e. friction, air viscosity) and changes in gravitational potential energy are negligible. The explosive force experienced by the shell inside the barrel can be estimated by Work-Energy Theorem, represented by the following formula:
(1)
Where:
- Explosive force, measured in newtons.
- Barrel length, measured in meters.
- Mass of the shell, measured in kilograms.
,
- Initial and final speeds of the shell, measured in meters per second.
If we know that
,
,
and
, then the explosive force experienced by the shell inside the barrel is:

![F = \frac{(1250\,kg)\cdot \left[\left(750\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}\right]}{2\cdot (15\,m)}](https://tex.z-dn.net/?f=F%20%3D%20%5Cfrac%7B%281250%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cleft%28750%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D-%5Cleft%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%5Cright%5D%7D%7B2%5Ccdot%20%2815%5C%2Cm%29%7D)

The explosive force experienced by the shell inside the barrel is 23437500 newtons.
The work done is by the centripetal force on mass m during an angular displacement of 2π revolutions mv²2π /r J
Centripetal force - a force acts on an moving object in circular path.
the centripetal force is given by
F= mv²/r (equation1)
Work done is given by
W = Fd (equation 2)
d = 2π
work is done by the centripetal force on mass m during an angular displacement of 2π revolutions is given by:
to calculate work done using equation 1 in 2 we get
W = mv² d/r
W = mv² × 2π /r J
The work done is by the centripetal force on mass m during an angular displacement of 2π revolutions mv²2π /r J
To know more about centripetal force :
brainly.com/question/13031430
#SPJ4