Answer:
Planets are bodies of rock or gas that are named after ancient gods.
Asteroids and Meteoroids are made of rock or metal, which often collide with Earth.
The terrestrial planets are more like the Earth.
The Juno spacecraft is exploring the planet Jupiter.
Explanation:
The planets and other stars in our solar system were similarly baptized. The planets were named after ancient gods. Other stars were baptized with names chosen by scientists or according to their peculiarity. Most of the planets were baptized by ancient Chinese astronomers, and later, by Babylonians. But over time different civilizations changed the names of the planets.
An asteroid is a smaller body in the solar system, usually on the order of just a few hundred kilometers. Meteoroids, in turn, are fragments of rocks that form from comets and asteroids. The luminous effect is produced when fragments of celestial bodies ignite in contact with the Earth's atmosphere due to friction. Both asteroids and meteoroids are made of rock or metal, which often collide with Earth.
The terrestrial planets are the most similar to the earth. These planets are those formed mainly by rocks and metals, have a solid surface without the incidence of rings, as is the case with Mercury, Venus and Mars.
The Juno spacecraft is exploring the planet Jupiter. This probe has already given us several unprecedented discoveries about the largest gas giant in the Solar System, in addition to sending us sensational images showing the complex and beautiful atmosphere of the planet.
Answer:
The pressure difference will increase by the factor of 1.75
Explanation:
For constant flow rate, coefficient of viscosity, length of the vessel and the pressure difference is inversely proportional to the fourth power of the radius of the blood vessel
Apply the principle of Poiseuille’s law.
Q = (P2 - P1)/R
Pls check the attached file for step by step solution of the question. It is submitted in this way as typing the equation may not be explanatory.
Answer: The average velocity is -0.965m/s
Explanation: The first step is to calculate the two velocities is both directions. A velocity is a distance per unit time.
V=d/ t
=-5.7/2.1
=-2.7m/s
For the other direction the velocity is
V=7.3/9.5
=0.77m/s
The average velocity the add the velocities and divide them by 2.
V=-2.7+0.77/2
V= 0.965m/s
Based on the given, this is probably a gravitational potential energy problem (PEgrav). The formula for PEgrav is:
PEgrav = mgh
Where:
m = mass (kg)
g = acceleration due to gravity
h = height (m)
With this formula you can derive the formula for your unknown, which is mass. First put in what you know and then solve for what you do not know.

![30J=m(10)(10[tex] \frac{30}{100} =m](https://tex.z-dn.net/?f=30J%3Dm%2810%29%2810%5Btex%5D%20%5Cfrac%7B30%7D%7B100%7D%20%3Dm)
)[/tex]
Do operations that you can with what is given first.

Transpose the 100 to the other side of the equation. Do not forget that when you transpose, you do the opposite operation.
m = 0.30kg