Answer:
1. Motion
2. Empty space
3. Far apart
4. Independently
5. Random or rapid
6. Collision
7. Kinetic energy
8. Atmospheric
9. 273 Kelvin or 0° Celsius
10. 1 atm, 101.3 kPa or 760 mmHg
Explanation:
In science, matter can be defined as anything that has mass and occupies space. Any physical object that is found on earth is typically composed of matter. Matter are known to be made up of atoms and as a result has the property of existing in states.
Generally, matter exists in three (3) distinct or classical phases and these are;
I. Gas.
II. Solid.
III. Liquid.
Filling the missing words or texts in the question, we have;
The kinetic theory describes the motion of particles in matter and the forces of attraction between them. The theory assumes that the volume occupied by a gas is mostly empty space, that the particles of gas are relatively far apart, move independently of each other, and are in constant random or rapid motion. The collision between particles are perfectly elastic so that the total kinetic energy remains constant. Gas pressure results from the simultaneous collisions of billions of particles with an object. Barometers are used to measure atmospheric pressure. Standard conditions are defined as a temperature of 273 Kelvin or 0° Celsius and a pressure of 1 atm, 101.3 kPa or 760 mmHg.
"D. Both have electrons that orbit the atomic nucleus in a similar way ." is not shared by Bohr's model and the modern atomic model.
Hope this helps,
Davinia.
The spiral structure of the milky way can be explained by long lived quasi-static density waves<em>, </em><em>according to the lin-shu hypothesis. </em>Curiously, the waves of higher density gas and stars (seen as spiral arms) appear to remain static as stars move around the galaxy. This explained by assuming that the gravitational disturbances cause by the 'clumping' material in the arms does not affect the gravitational field of the galaxy as whole and is therefore negligible.
source: Astrophysicist
I personally would live on Mars cuz that is red cuz
The work done to transport an electron from the positive to the negative terminal is 1.92×10⁻¹⁹ J.
Given:
Potential difference, V = 1.2 V
Charge on an electron, e = 1.6 × 10⁻¹⁹ C
Calculation:
We know that the work done to transport an electron from the positive to the negative terminal is given as:
W.D = (Charge on electron)×(Potential difference)
= e × V
= (1.6 × 10⁻¹⁹ C)×(1.2 V)
= 1.92 × 10⁻¹⁹ J
Therefore, the work done in bringing the charge from the positive terminal to the negative terminal is 1.92 × 10⁻¹⁹ J.
Learn more about work done on a charge here:
<u>brainly.com/question/13946889</u>
#SPJ4