Answer:
Explanation:
spring constant k = 425 N/m
a ) At the point of equilibrium
restoring force = frictional force
= kx = 10 N
425 x = 10
x = 2.35 cm
b )
Work done by frictional force
= -10 x 2.35 x 10⁻² x 2 J ( Distance is twice of 2.35 cm )
= - 0.47 J
= Kinetic energy remaining with the cookie as it slides back through the position where the spring is unstretched .
= 425 - 0.47
= 424.53 J
=
Gay Lussac's Law states: At a constant volume Pressure<span> divided by </span>Temperature<span> is</span>constant<span> P/T = k Together these three laws form the foundation of the Ideal </span>Gas<span>Law. Objective: Students will </span>investigate<span> Gay Lussac's Law relating </span>pressure<span> and</span>temperature<span> at a </span><span>constant temperature.</span>
The core difference is that heat deals with thermal energy, whereas temperature is more concerned with molecular kinetic energy. Heat is the transfer of thermal energy, whereas temperature is a property the object exhibits.
W=F*D
83J=F*14
83/14=F
5.92N