Answer:
Hi... Potential energy is converted to kinetic energy and kinetic energy is converted to potential energy
The total work done on the car is 784Joule.
<h3>What's the acceleration of the car?</h3>
- As per Newton's equation of motion, V= U+at
- U= initial velocity= 0 m/s
V= vinal velocity= 20m/s
t= time = 10s
a= acceleration
=> a= 20/10= 2m/s²
<h3>What's the distance covered by the car in 10 seconds?</h3>
- As per Newton's equation of motion,
V²-U² = 2aS
- S= distance covered by the car
- So, 20²-0=2×2×S=4S
=> 400= 4S
=> S= 400/4= 100m
<h3>What's the work done on the car due to frictional force?</h3>
Work done by frictional force= frictional force × distance
= (0.2×4×9.8)×100
= 784Joule
Thus, we can conclude that the work done on the car is 784Joule.
Learn more about the work done here:
brainly.com/question/25573309
#SPJ1
Explanation:
Plants, as a autotrophs have chlorophyll to capture light energy from sun to make starch and sugar. Then, consumers eat plants, and the sugar is transferred to higher trophic level in a form of organic food. Nevertheless, energy is lost by uneaten food, indigestible food, unabsorbed food, excretory waste (eg co2) and heat loss by respiration.
about 5 watts (5W) of power
Answer:
A=50mΩ
B≅50mΩ
Explanation:
A) To answer this question we have to use the Current Divider Rule. that rule says:
(1)
Itotal represents the new maximun current, 50mA, Ix is the current going through the 100 ohms resistor, and Req. is the equivalent resitor.
We now have a set of two resistor in parallel, so:
(2)
where R1 is the resitor we have to calculate, and R2 is the 100 ohms resistor (25 uA).
substituting and rearranging (2)
(3)
Now substituting (3) in (1).

solving this, The value of R1 is: 50mΩ
This value of R1 will guaranty that the ammeter full reflection willl be at 50mA.
Given that R2 (100ohm) it too much bigger than 50mΩ, the equivalent resistor will tend to 50mΩ
If you substitude this values on (2) Req. will be 49.97 mΩ.