Answer:
1.) A simple harmonic oscillator has an amplitude of 3.50 cm and a maximum speed of 26.0 cm/s. What is its speed when the displacement is 1.75 cm? 2.) Both pendulum A and B are 3.0 m long. The period of A is T. Pendulum A is twice as heavy as pendulum B. What is the period of B? 3.) The time for one cycle of a periodic process is called the _ ? 4.) In simple harmonic motion, the acceleration is proportional to? 5.) The position of a mass that is oscillating on a spring is given by x= (18.3 cm) cos [(2.35 s-1)t]. What is the frequency of this motion?
Explanation:
Answer:
He traveled 9km
Explanation:
To do this problem you need to use the equation which is Speed= distance/time and this problem gives you the speed which is 18 km/h and it gives you the time 1/2 hour so you write the equation 18= d/ 1/2 which his distance is 9km
Answer:
Wind the long piece of thin wire around the uniform glass rod multiple times, find the length of the total diameters using the metre ruler, and divide by the number of times you wound it around the rod.
Explanation:
Since the diameter of one long piece of thin wire is too thin to be measured by a metre ruler, you can wind it multiple times and push it side by side to get a length you can measure.
For example, if you wound it around 20 times and the total length of 20 diameters of the wire side-by-side is 2.0 cm, one winding, which is the diameter would be 2.0cm ÷ 20 = 0.10cm or 1mm.
1. I think it's the trails left by an electron as it moves around the nucleus.
2. The atomic number is the number of protons so it is 8.
3. It's mass is lowered but it is still the same element.
To solve this problem we will apply the concepts related to the electric field such as the smelting of the Force and the load (In this case the force is equivalent to the weight). Later we will apply the ratio of the total charge as a function of the multiplication of the number of electrons and their individual charge.

Here,
m = mass
g = Acceleration due to gravity
Rearranging to find the charge,

Replacing,


Since the field is acting upwards the charge on the drop should be negative to balance it in air. The equation to find the number of electrons then is

Here,
n = Number of electrons
e = Charge of each electron

Replacing,


Therefore the number of electrons that reside on the drop is 