Answer:

Explanation:
= Velocity of one lump = 
= Velocity of the other lump = 
m = Mass of each lump = 
The collision is perfectly inelastic as the lumps stick to each other so we have the relation

The velocity of the stuck-together lump just after the collision is
.
Answer:

Explanation:
Asúmase que la patinadora experimenta una aceleración constante. La fuerza neta experimentada por la patinadora:
![F_{net} = (50\,kg)\cdot \left[\frac{\left(15\,\frac{m}{s}\right)^{2}-\left(0\,\frac{m}{s}\right)^{2} }{2\cdot (3000\,m)} \right]](https://tex.z-dn.net/?f=F_%7Bnet%7D%20%3D%20%2850%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cfrac%7B%5Cleft%2815%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%5Cright%29%5E%7B2%7D-%5Cleft%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%5Cright%29%5E%7B2%7D%20%7D%7B2%5Ccdot%20%283000%5C%2Cm%29%7D%20%5Cright%5D)

Answer:
7.2 as used in the equation
Answer:
e. The torque is the same for all cases.
Explanation:
The formula for torque is:
τ = Fr
where,
τ = Torque
F = Force = Weight (in this case) = mg
r = perpendicular distance between force an axis of rotation
Therefore,
τ = mgr
a)
Here,
m = 200 kg
r = 2.5 m
Therefore,
τ = (200 kg)(9.8 m/s²)(2.5 m)
<u>τ = 4900 N.m</u>
<u></u>
b)
Here,
m = 20 kg
r = 25 m
Therefore,
τ = (20 kg)(9.8 m/s²)(25 m)
<u>τ = 4900 N.m</u>
<u></u>
c)
Here,
m = 8 kg
r = 62.5 m
Therefore,
τ = (8 kg)(9.8 m/s²)(62.5 m)
<u>τ = 4900 N.m</u>
<u></u>
Hence, the correct answer will be:
<u>e. The torque is the same for all cases.</u>
Perpendicular slope would be 1/3. so the equation will be Y=1/3x -4