Years of research have demonstrated that rats are intelligent creatures who experience pain and pleasure, care about one another, are able to read the emotions of others, and would assist other rats, even at their own expense.
<h3>Experiments:</h3>
In trials carried out at Brown University in the 1950s, rats were trained to press a lever for food, but they stopped pressing the lever when they noticed that with each press, a rat in an adjacent cage would scream in pain (after experiencing an electric shock).
Rats were trained to press a lever to lower a block that was hanging from a hoist by electric shocks administered by experimenters. A rat was subsequently hoisted into a harness by the experimenters, and according to their notes, "This animal normally shrieked and wriggled sufficiently while dangling, and if it did not, it was jabbed with a sharp pencil until it exhibited indications of discomfort." Even if it wasn't in danger of receiving a shock, a rat watching the scenario from the floor would pull a lever to lower the hapless rodent to safety.
Learn more about experiments on rats here:
brainly.com/question/13625715
#SPJ4
Answer:
scratching a surface to make it rougher
increasing the size of a flying object
adding extra weight to an object
Explanation:
Answer:
An object responds to a force by tending to move in the direction of that force
Explanation:
The inertia of a body can be defined with the help of Newton's second law
F = m a
Where F is the applied force, a is the acceleration of the body and m is the mass
the force and the acceleration are vectors that point in the same direction and m is a scalar constant that relates the two vectors, this scalar constant is called masses and it measures the resistance of the bodies to the change of motion.
From the previous statement we see that the statement that best describes inertia is:
An object responds to force by tending to move in the direction of the force.
In electronics, the SI unit for current is Ampere. It is the amount of charge in Coulombs per unit time. It is named after the father of electrodynamics, Andre-Marie Ampere. Also, the current can be easily determined through the Ohm's Law, which states that current is equal to volts divided by the resistance. The answer is letter D.
Answer:
Temperature at the exit = 
Explanation:
For the steady energy flow through a control volume, the power output is given as

Inlet area of the turbine = 
To find the mass flow rate, we can apply the ideal gas laws to estimate the specific volume, from there we can get the mass flow rate.
Assuming Argon behaves as an Ideal gas, we have the specific volume 
as


for Ideal gasses, the enthalpy change can be calculated using the formula

hence we have


<em>Note: to convert the Kinetic energy term to kilojoules, it was multiplied by 1000</em>
evaluating the above equation, we have 
Hence, the temperature at the exit = 