I think the answer is b.boom
Answer:
inches and feet (or even centameters)
Explanation:
these are all common units used to measure height
Answer:
#_photons = 30 photons / s
Explanation:
Let's start by finding the energy of a photon of light, let's use the Planck relation
E = h f
the speed of light is related to wavelength and frequency
c = λ f
we substitute
E = h c /λ
E₀ = 6.63 10⁻³⁴ 3 10⁸/500 10⁻⁹
E₀ = 3.978 10⁻¹⁹ J
now let's use a direct proportion rule. If the energy of a photon is Eo, how many fornes has an energy E = 1.2 10⁻¹⁷ J in a second
#_photons = 1 photon (E / Eo)
#_photons = 1 1.2 10⁻¹⁷ /3.978 10⁻¹⁹
#_photons = 3.0 10¹
#_photons = 30 photons / s
Answer:
One way to test the hypothesis is to create two waves, one in the air and one on the ground at the same time. One of them for the elephant to get closer and another for the elephants to move away. Observe the reaction of the animal and with this we know which sound came first.
Explanation:
This hypothesis is based on the fact that the speed of sound in air is v = 343 m / s with a small variation with temperature.
The speed of sound in solid soil is an average of the speed of its constituent media, giving values between
wood 3900 m / s
concrete 4000 m / s
fabrics 1540 m / s
earth 5000 m / s wave S
ground 7000 m / s P wave
we can see that the speed on solid earth is an order of magnitude greater than in air.
One way to test the hypothesis is to create two waves, one in the air and one on the ground at the same time. One of them for the elephant to get closer and another for the elephants to move away. Observe the reaction of the animal and with this we know which sound came first.
From the initial information, the wave going through the ground should arrive first.