<u>Answer:</u> The pH and pOH of the solution is 1 and 13 respectively and the solution is acidic in nature.
<u>Explanation:</u>
There are three types of solution: acidic, basic and neutral
To determine the type of solution, we look at the pH values.
- The pH range of acidic solution is 0 to 6.9
- The pH range of basic solution is 7.1 to 14
- The pH of neutral solution is 7.
We are given:
Concentration of HI = 0.100 M
1 mole of HI produces 1 mole of hydrogen ions and 1 mole of iodide ions
To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
![[H^+]=0.100M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.100M)
Putting values in above equation, we get:

To calculate the pOH of the solution, we use the equation:
pH + pOH = 14

Hence, the pH and pOH of the solution is 1 and 13 respectively and the solution is acidic in nature.
Answer:
0.6743 M
Explanation:
HC₂H₃O₂ + NaOH → NaC₂H₃O₂ + H₂O
First we <u>calculate how many NaOH moles reacted</u>, using the <em>definition of molarity</em>:
- Molarity = moles / volume
- moles = Molarity * volume
- 0.4293 M * 39.27 mL = 16.86 mmol NaOH
<em>One NaOH moles reacts with one acetic acid mole</em>, so <u>the vinegar sample contains 16.86 mmoles of acetic acid as well</u>.
Finally we <u>calculate the concentration (molarity) of acetic acid</u>:
- 16.86 mmol HC₂H₃O₂ / 25.00 mL = 0.6743 M