Answer:
The pOH of HNO₃ solution that ha OH⁻ concentration 9.50 ×10⁻⁹M is 8.
Explanation:
Given data:
[OH⁻] = 9.50 ×10⁻⁹M
pOH = ?
Solution:
pOH = -log[OH⁻]
Now we will put the value of OH⁻ concentration.
pOH = -log[9.50 ×10⁻⁹M]
pOH = 8
Thus the pOH of HNO₃ solution that ha OH⁻ concentration 9.50 ×10⁻⁹M is 8.
Answer: how do we answer when there are no options??
Explanation:
Answer;
= 0.054 kg or 54 g
Explanation;
Using the equation; Q = mcΔT where Q is the quantity of heat transferred, m is the mass, c is specific heat of the substance, ΔT is delta T, the change in temperature.
ΔT = 75 - 20 = 55 C.
Solve the equation for m
m = Q/ cΔT
Mass = 12500 / (55 × 4200)
= 0.054 kg or 54 g
[
] value of soft drink is 0.0001mol/l when given pH is 4.
Given:
pH = 4
Needs to find: [
]
Formula to find: pH=−log
[
]
We can put the values of pH in above formula as,
pH=−log
[
]
4 =−log
[
]
To calculate hydonium ion concentration, formula is as follows;
[
] = 
[
] =
= 0.0001mol/l
[
] value of soft drink is 0.0001mol/l
Learn more about pH here:
brainly.com/question/2288405
#SPJ4
Answer:
Explanation:
A tertiary alcohol is a compound (an alcohol) in which the carbon atom that has the hydroxyl group (-OH) is also bonded (saturated) to three different carbon atoms.
Based on the question, the only <u>tertiary alcohol that can result from C₆H₁₄O that have a 4-carbon chain</u> is
2-hydroxy-2,3-dimethylbutane
H OH H H
| | | |
H - C - C - C - C - H
| | | |
H CH₃ CH₃ H
From the above, we can see that the carbon atom having the hydroxyl group is also bonded to three other carbon atoms. And since we aren't considering stereochemistry, this is the only tertiary alcohol we can have with a 4-carbon chain