1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldfiish [28.3K]
3 years ago
7

Pls help me answer this question from least you greatest

Mathematics
2 answers:
Tanzania [10]3 years ago
7 0

Answer: the answer is D

ivanzaharov [21]3 years ago
4 0
The answer choice is D has the correct order for least to greatest
You might be interested in
Tim count his friends fingers by fives. he counts the fingers on six hands. what number does he say?
Fudgin [204]
6*5= 30 fingers, so tim would say there are 30 fingers.
6 0
3 years ago
Area of the bounded curves y=x^2, y=√(7+x)
N76 [4]

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

5 0
3 years ago
30 points!!
Verdich [7]

<u>D</u> is the correct answer folks

8 0
3 years ago
Read 2 more answers
How to Factor -x^2-2x +15
andre [41]

Answer:

Step-by-step explanation:

-2x2-12x-15

Final result :

 -2x2 - 12x - 15

Step by step solution :

Step  1  :

Equation at the end of step  1  :

 ((0 -  2x2) -  12x) -  15

Step  2  :

Step  3  :

Pulling out like terms :

3.1     Pull out like factors :

  -2x2 - 12x - 15  =   -1 • (2x2 + 12x + 15)

Trying to factor by splitting the middle term

3.2     Factoring  2x2 + 12x + 15

     

4 0
4 years ago
Read 2 more answers
The five starters on Raylene's basketball team lined up in order of height from shortest to tallest? Which statistic must descri
UkoKoshka [18]
It should be median
4 0
3 years ago
Read 2 more answers
Other questions:
  • Only answer if you are 100% sure
    5·1 answer
  • What is the solution to the equation x + 14 = 63? <br> Pleas help
    5·2 answers
  • What is the value of x? <br> А. 68° <br> В. 38°<br> с. 1129<br> D. 88°
    14·1 answer
  • What value of x is in the solution set of 8x - 6 &gt; 12 + 2x?<br><br>-1<br>0<br>3<br>5​
    6·2 answers
  • 9+2k+(7-2k)5 please help me solve
    10·1 answer
  • Meaning of variable point​
    7·1 answer
  • A minus b minus a square plus b square​
    14·1 answer
  • Someone help PLZ make sure it’s right if it is will mark brainiest
    8·1 answer
  • Factorise fully 2a²b - ab - a​
    5·1 answer
  • Please answer quickly and explain how!ToT<br><br><br> 276 is what percent of 92?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!