The Euglena is unique in that it is both heterotrophic (must consume food) and autotrophic (can make its own food).
Answer:

Explanation:
Additional information:
<em>The ball has charge </em>
<em>, and the ring has positive charge </em>
<em> distributed uniformly along its circumference. </em>
The electric field at distance
along the z-axis due to the charged ring is

Therefore, the force on the ball with charge
is


and according to Newton's second law

substituting
we get:

rearranging we get:

Now we use the approximation that
<em>(we use this approximation instead of the original </em>
<em> since </em>
<em>, our assumption still holds )</em>
and get


Now the last equation looks like a Simple Harmonic Equation

where

is the frequency of oscillation. Applying this to our equation we get:


83 km/h * 2.5 hours (3:30 - 1:00) = 207.5 km
207.5 km - 15 km = 192.5 km
Answer:
The speed of the stone when it is 4.66 m higher is 236.057 m/s.
Explanation:
Given the initial velocity and vertical distance, we can use the fourth kinematic equation (
) to find v final, or the v to the left of the equal sign. We know
(initial velocity) is 24.7 m/s, y (change in vertical distance) is 4.66 m, and a is another way to write g (acceleration due to gravity), or 9.8
.
From here you could plug in the values and solve for v final, but to make the solving process simpler, we can simplify the given equation, <em>then </em>plug in the known values.
To isolate v final, we can take the square root of
and do the same to the right side of the equation. Therefore, we can find v final with:
, where v initial is outside of the square root because it squared...
If we plug in the known values to the simplified equation, we get: 
The final answer is 236.057 m/s.
I'd say B.) Increasing the voltage of the battery.