Object Falling from Rest. As an object falls from rest, its gravitational potential energy is converted to kinetic energy. Conservation of energy as a tool permits the calculation of the velocity just before it hits the surface. K.E. = J, which is of course equal to its initial potential energy.
Answer:
Option C
Explanation:
Revolution: When an object moves around another object it is called revolution.
Rotation: When an object spins around its axis it's called rotation
P1 and P2 are the pressures, and V1 and V2 are the volumes. So you take the first pressure and volume you are given and place them into the equation P1V1 so the first part of the equation would be 101000*0.5 = P2V2. You then rearrange the equation to find what you want, in this instance you would do 50500/0.25 = P2... therefore P2 = 2020000Pa or 2.02*10^6Pa
To calculate the work, we use:
W = PΔV
W = 10(0.4-0.01)
W = 3.9 L*atm
W = 3.9 * 101.3
W = 395.07 Joules
Answer:
ans: 4.34 × 10^(-9) N
Explanation:
mass of Mya say (m) = 65 kg
mass of spaceship say (M) = 1600 kg
universal gravitational constant(G) =6.67 × 10^(-11) Nm²/kg²
separation distance (d) = 4m
so,
gravitational force (F)= GMm/d²
=( 6.67 × 65 × 1600) / ( 10¹¹ × 4²)
= 4.34 × 10⁴ / 10¹³
= 4.34 × 10^(-9) N