Answer:
The water is flowing at the rate of 28.04 m/s.
Explanation:
Given;
Height of sea water, z₁ = 10.5 m
gauge pressure,
= 2.95 atm
Atmospheric pressure,
= 101325 Pa
To determine the speed of the water, apply Bernoulli's equation;

where;
P₁ = 
P₂ = 
v₁ = 0
z₂ = 0
Substitute in these values and the Bernoulli's equation will reduce to;

where;
is the density of seawater = 1030 kg/m³

Therefore, the water is flowing at the rate of 28.04 m/s.
The answer is True. The amount force exerted by any object is directly proportional to its mass. This means that our planet is exerting more gravitational force to Angelina, and Angelina is also exerting a gravitational force on our planet directly proportional to her mass. Angelina is actually falling towards the center of the earth,and also our planet is also moving towards Angelina, but it seems negligible with respect to Angelina.Our Sun is so massive that it held our planet in its orbit because of its gravitational force.
Answer:
The current through the inductor at the end of 2.60s is 9.7 mA.
Explanation:
Given;
emf of the inductor, V = 41.0 mV
inductance of the inductor, L = 13 H
initial current in the inductor, I₀ = 1.5 mA
change in time, Δt = 2.6 s
The emf of the inductor is given by;

Therefore, the current through the inductor at the end of 2.60 s is 9.7 mA.
Answer:
3.49 seconds
3.75 seconds
-43200 ft/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

Time the parachutist falls without friction is 3.19 seconds

Speed of the parachutist when he opens the parachute 31.32 m/s. Now, this will be considered as the initial velocity

So, time the parachutist stayed in the air was 3.19+0.3 = 3.49 seconds


Now the initial velocity of the last half height will be the final velocity of the first half height.

Since the height are equal


Time taken to fall the first half is 2.65 seconds
Total time taken to fall is 2.65+1.1 = 3.75 seconds.
When an object is thrown with a velocity upwards then the velocity of the object at the point to where it was thrown becomes equal to the initial velocity.

Magnitude of acceleration is -43200 ft/s²
Answer:
The particle’s velocity is -16.9 m/s.
Explanation:
Given that,
Initial velocity of particle in negative x direction= 4.91 m/s
Time = 12.9 s
Final velocity of particle in positive x direction= 7.12 m/s
Before 12.4 sec,
Velocity of particle in negative x direction= 5.32 m/s
We need to calculate the acceleration
Using equation of motion


Where, v = final velocity
u = initial velocity
t = time
Put the value into the equation


We need to calculate the initial speed of the particle
Using equation of motion again


Put the value into the formula


Hence, The particle’s velocity is -16.9 m/s.