Answer:
The height of the hill is, h = 38.42 m
Explanation:
Given,
The horizontal velocity of the soccer ball, Vx = 15 m/s
The range of the soccer ball, s = 42 m
The projectile projected from a height is given by the formula
S = Vx [Vy + √(Vy² + 2gh)] / g
Therefore,
h = S²g/2Vx² (Since Vy = 0)
Substituting the values
h = 42² x 9.8/ (2 x 15²)
= 38.42 m
Hence, the height of the hill is, h = 38.42 m
<span>It could not be captured on film. is the answer</span>
Answer:
(a) dime
Explanation:
Convert all to metric unit:
0.5 cm = 0.005 m
1.8 cm = 0.018 m
71 cm = 0.71 m
In order to find out we would need to calculate the ratio R between the object diameter d and their distance s to our eyes:
Since the ratio of the dime is larger than the ratio of the moon, and the ratio of the pea is smaller than the ratio of the moon, only the (a) dime can cover your view of the moon.
Answer:
D) Electric power distribution.
Explanation:
Electric power distribution requires high voltages to efficiently transmit electric power. This requires use of a transformer which uses electromagnetic induction.
Highest energy photon absorbed:
Explanation:
An atom is said to be (positively) ionised when it absorbs a photon, and as a consequence, an electron becomes energetic enough to escape the atom, leaving an excess of positive charge behind.
In order for the electron to escape, the energy of the absorbed photon must be exactly equal to the (negative) energy of the level in which the electron lies.
For an hydrogen atom, the energy levels are given by
where this energy is measured in electronvolts, and n is the number of the energy level.
Since the energy is negative, this means that the electron which requires most energy is the one lying in the ground state (n=1). Therefore, for an electron in the ground state, the most energy that can be absorbed from the incoming photon is
Converting into Joules, this is equal to
Learn more about hydrogen atom:
brainly.com/question/2757829
#LearnwithBrainly