Answer:
the final speed of the rain is 541 m/s.
Explanation:
Given;
acceleration due to gravity, g = 9.81 m/s²
height of fall of the rain, h = 9,000 m
time of the rain fall, t = 1.5 minutes = 90 s
Determine the initial velocity of the rain, as follows;

The final speed of the rain is calculated as;

Therefore, the final speed of the rain is 541 m/s.
Answer:
=1419.19 meters.
Explanation:
The time it takes for the shell to drop to the tanker from the height, H =1/2gt²
610m=1/2×9.8×t²
t²=(610m×2)/9.8m/s²
t²=124.49s²
t=11.16 s
Therefore, it takes 11.16 seconds for a free fall from a height of 610m
Range= Initial velocity×time taken to hit the tanker.
R=v₁t
Lets change 300 mph to kph.
=300×1.60934 =482.802 kph
Relative velocity=482.802 kph-25 kph
=457.802 kph
Lets change 11.16 seconds to hours.
=11.16/(3600)
=0.0031 hours.
R=v₁t
=457.802 kph × 0.0031 hours.
=1.41918 km
=1.41919 km × 1000m/km
=1419.19 meters.
Answer:
The answer is "
".
Explanation:
Formula for calculating the mass in He:


Formula for calculating the mass in
:


by using the temperature balancing the equation:


For the answer to the question above, this is the maximum displacement, the spring has only elastic potential energy.
spring is constant @ 5 N/m
maximum displacement = 2 cm = 0.02 m
elastic potential energy = 1/2 kx²
= 0.5 x 5 x 0.02²
So the answer would be
= 0.001 Joules