Answer:
The correct answer to the following question will be Option B (Public key infrastructure).
Explanation:
This seems to be a program that allows an individual to deliver an encrypted message or file through some kind of public key that can be unlocked by the intended receiver using another key or code, almost always a private or personal key.
- This is a collection of functions, rules, equipment, applications, and methods required to develop, maintain, deliver, utilize, save, and withdraw digital credentials, and handle encryption with the public key.
- This safeguards against hacking or interference with customer information or data.
Answer: Bulleted or numbered lists, presenting data in tables, and the formatting one.
Explanation: I’m taking the test and i’m pretty sure that’s right, lmk if you got a better answer though!
Answer:
In computing, memory is a device or system that is used to store information for immediate use in a computer or related computer hardware and digital electronic devices. The term memory is often synonymous with the term primary storage or main memory. An archaic synonym for memory is store.
Answer:
int sumid=0; /* Shared var that contains the sum of the process ids currently accessing the file */
int waiting=0; /* Number of process waiting on the semaphore OkToAccess */
semaphore mutex=1; /* Our good old Semaphore variable ;) */
semaphore OKToAccess=0; /* The synchronization semaphore */
get_access(int id)
{
sem_wait(mutex);
while(sumid+id > n) {
waiting++;
sem_signal(mutex);
sem_wait(OKToAccess);
sem_wait(mutex);
}
sumid += id;
sem_signal(mutex);
}
release_access(int id)
{
int i;
sem_wait(mutex);
sumid -= id;
for (i=0; i < waiting;++i) {
sem_signal(OKToAccess);
}
waiting = 0;
sem_signal(mutex);
}
main()
{
get_access(id);
do_stuff();
release_access(id);
}
Some points to note about the solution:
release_access wakes up all waiting processes. It is NOT ok to wake up the first waiting process in this problem --- that process may have too large a value of id. Also, more than one process may be eligible to go in (if those processes have small ids) when one process releases access.
woken up processes try to see if they can get in. If not, they go back to sleep.
waiting is set to 0 in release_access after the for loop. That avoids unnecessary signals from subsequent release_accesses. Those signals would not make the solution wrong, just less efficient as processes will be woken up unnecessarily.