1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jekas [21]
3 years ago
12

Each bag of apples weighs 4½ pounds. How much would 3½ bags of apples weigh?\

Mathematics
1 answer:
bonufazy [111]3 years ago
3 0

Answer:

15 3/4 pounds

Step-by-step explanation:

4.5*3.5=15.75

You might be interested in
HELP ASAP PLEASE!!!!!!!!!!!!!!!
TiliK225 [7]
ITS D!! It’s the third option !!
8 0
3 years ago
Patrick has just finished building a pen for his new dog. The pen is 3 feet wider than it is long. He also built a doghouse to p
zalisa [80]

General Idea:

(i) Assign variable for the unknown that we need to find

(ii) Sketch a diagram to help us visualize the problem

(iii) Write the mathematical equation representing the description given.

(iv) Solve the equation by substitution method. Solving means finding the values of the variables which will make both the equation TRUE

Applying the concept:

Given: x represents the length of the pen and y represents the area of the doghouse

<u>Statement 1: </u>"The pen is 3 feet wider than it is long"

Length \; of\; the \; pen = x\\ Width \; of\; the\; pen=x+3

------

<u>Statement 2: "He also built a doghouse to put in the pen which has a perimeter that is equal to the area of its base"</u>

Area \; of\; the\; Dog \; house=y\\ Perimeter \; of\; Dog\; house=y

------

<u>Statement 3: "After putting the doghouse in the pen, he calculates that the dog will have 178 square feet of space to run around inside the pen."</u>

Area \; of \; the\; Pen - Area \;of \;the\;Dog \;House=\;Space\;inside\;Pen\\ \\ x \cdot (x+3)-y=178\\ Distributing \;x\;in\;the\;left\;side\;of\;the\;equation\\ \\ x^2+3x-y=178\Rightarrow\; 1^{st}\; Equation\\

------

<u>Statement 4: "The perimeter of the pen is 3 times greater than the perimeter of the doghouse."</u>

Perimeter\; of\; the\; Pen=3\; \cdot \; Perimeter\; of\; the\; Dog\; House\\ \\ 2(x \; + \; x+3)=3 \cdot y\\ Combine\; like\; terms\; inside\; the\; parenthesis\\ \\ 2(2x+3)=3y\\ Distribute\; 2\; in\; the\; left\; side\; of\; the\; equation\\ \\ 4x+6=3y\\ Subtract \; 6\; and \; 3y\; on\; both\; sides\; of\; the\; equation\\ \\ 4x+6-3y-6=3y-3y-6\\ Combine\; like\; terms\\ \\ 4x-3y=-6 \Rightarrow \; \; 2^{nd}\; Equation\\

Conclusion:

The systems of equations that can be used to determine the length and width of the pen and the area of the doghouse is given in Option B.

178=x^2+3x-y\\ \\ -6=4x-3y

8 0
3 years ago
Read 2 more answers
I am a 2 digit number.
AlexFokin [52]

Answer:

65

Step-by-step explanation:

6+5=11

5 0
3 years ago
Tom went to a shop where there was a 20% off sale taking place
-Dominant- [34]
Find 20 percent of $20 by multiplying 0.20 x20

You get $4. That’s what he saved.
7 0
3 years ago
In Problems 1-8, determine the level of measurement of each variable.
lbvjy [14]

The level of measurement of each given variable are:

1. Ordinal

2. Nominal

3. Ratio

4. Interval

5. Ordinal

6. Nominal

7. Ratio

8. Interval

Level of measurement is used in assigning measurement to variables depending on their attributes.

There are basically four (4) levels of measurement (see image in the attachment):

1. <u>Nominal:</u> Here, values are assigned to variables just for naming and identification sake. It is also used for categorization.

  • Examples of variables that fall under the measurement are: Favorite movie, Eye Color.

<u>2. Ordinal:</u> This level of measurement show difference between variables and the direction of the difference. In order words, it shows magnitude or rank among variables.

  • Examples of such variables that fall under this are: highest degree conferred, birth order among siblings in a family.

<u>3. Interval Scale:</u> this third level of measurement shows magnitude, a known equal difference between variables can be ascertain. However, this type of measurement has <em>no true zero</em> point.

  • Examples of the variables that fall here include: Monthly temperatures, year of birth of college students

4. Ratio Scale: This scale of measurement has a "true zero". It also has every property of the interval scale.

  • Examples are: ages of children, volume of water used.

Therefore, the level of measurement of each given variable are:

1. Ordinal

2. Nominal

3. Ratio

4. Interval

5. Ordinal

6. Nominal

7. Ratio

8. Interval

Learn more about level of measurement here:

brainly.com/question/20816026

3 0
2 years ago
Other questions:
  • A recipe for apple cake needs 10 mL of baking powder, 70 mL of butter, 190 mL of sugar and 420 mL of flour. This is enough to ma
    14·1 answer
  • M x 5 = 30<br><br> m = ?<br> A) 3 <br> B) 4 <br> C) 5 <br> D) 6 what the answer
    5·2 answers
  • Can two numbers have a GCF that is bigger than their LCM? Explain how you know?
    5·1 answer
  • Allie builds a new bookcase with 8 shelves. She can put 30 books on each shelf. How many books can the bookcase hold?
    8·2 answers
  • To determine the number of square centimeters in 8 square inches, multiply 8 by 6.45.
    14·1 answer
  • What is the slope for -3 , -2.5​
    9·1 answer
  • Please help immediately again
    10·1 answer
  • What is the standard form of the points (-3,4) (2,-6)
    7·1 answer
  • Goods costing $2,300 are purchased on account on July 15 with credit terms of 2/10, n/30. On July 18, a $100 credit memo is rece
    5·1 answer
  • Marley had $120 to buy books. She purchased 6 books and has $18 left.<br> How much was each book?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!