Hello!
To find the number of atoms in 2.822 moles of nickel, we need to multiply it by Avogadro's number. Avogadro's number is 6.02 x 10^23 atoms.
2.822 moles x (6.02 x 10^23) ≈ 1.698844 x 10^24
Therefore, there are about 1.70 x 10^24 atoms (according to the number of significant figures) in 2.822 moles of nickel.
Answer:
it is 8.40189 moles of AlCl3
mole = mass/molar mass
mole= 1119.972/133.34
Answer:
An alcohol thermometer can measure the freezing point of a liquid that freezes at −80 °C.
Explanation:
A thermometer is a device used to measure temperature. A thermometer must contain a thermometric substance. A thermometric substance is any substance having a particular physical property that changes with temperature.
For all liquid-in-glass thermometers, the property that changes with change in temperature is the height of the liquid. There are two kinds of liquid-in-glass thermometers; mercury-in-glass thermometer and alcohol-in-glass thermometer.
Alcohol-in-glass thermometer measures very low temperatures up to as low as -115°C. If it measures such a low temperature, then it can efficiently measure -80°C hence the answer.
Alcohol-in-glass thermometers have a narrower temperature range than mercury-in-glass thermometer. The later is well adapter for the measurement bof higher tempetures up to 357°C.
Possibly electron shells, t<span>he </span>electrons<span> in the outermost occupied </span>shell<span> (or </span>shells<span>) determine the chemical properties of the atom..</span>
Answer:
a)CH₄, BH₃, and CCl₄
Explanation:
<u>London dispersion forces:-
</u>
The bond for example, in the molecule is F-F, which is non-polar in nature because the two fluorine atoms have same electronegativity values.
The intermolecular force acting in the molecule are induced dipole-dipole forces or London Dispersion forces / van der Waals forces which are the weakest intermolecular force.
Out of the given options, H₂O , NH₃ exhibits hydrogen bonding which is:-
<u>Hydrogen bonding:-
</u>
Hydrogen bonding is a special type of the dipole-dipole interaction and it occurs between hydrogen atom that is bonded to highly electronegative atom which is either fluorine, oxygen or nitrogen atom.
Thus option B and C rules out.
<u>Hence, the correct option which represents the molecules which would exhibit only London forces is:- a)CH₄, BH₃, and CCl₄</u>