Answer:
The mass of 3.491 × 10¹⁹ molecules of Cl₂  of Cl₂ is 4.11 × 10⁻³ grams
Explanation:
The number of particles in one mole of a substance id=s given by the Avogadro's number which is approximately 6.023 × 10²³ particles
Therefore, we have;
One mole of Cl₂ gas, which is a compound, contains 6.023 × 10²³ individual molecules of Cl₂
3.491 × 10¹⁹ molecules of Cl₂ is equivalent to (3.491 × 10¹⁹)/(6.023 × 10²³) = 5.796 × 10⁻⁵ moles of Cl₂
The mass of one mole of Cl₂ = 70.906 g/mol
The mass of 5.796 × 10⁻⁵ moles of Cl₂ = 70.906 × 5.796 × 10^(-5) = 4.11 × 10⁻³ grams
Therefore;
The mass of 3.491 × 10¹⁹ molecules of Cl₂  of Cl₂ = 4.11 × 10⁻³ grams.
 
        
             
        
        
        
The given equilibrium reaction is,

The given reaction is exothermic. So, heat energy will be a product. Therefore, decreasing the temperature (heat energy) would lead to the formation of more products as when the amount of energy which is a product is reduced, there is more room for the products to form.
Increasing the pressure would shift the equilibrium towards that side which has least number of moles of the gaseous substance. Hence, here increasing the pressure would lead to the formation of more products by shifting the equilibrium towards the right side.
Decreasing the volume would make the equilibrium shift towards the least number of moles of the gaseous substance. So, here in this equilibrium decreasing the volume would lead to the formation of more products.
 
        
                    
             
        
        
        
The answer is number two here is an explanation of why I said number two ....
In chemistry, orbital hybridisation is the concept of mixing atomic orbitals into new hybrid orbitals suitable for the pairing of electrons to form chemical bonds in valence bond theory.
        
             
        
        
        
the Orange side will grow higher bc people on the blue side will eventually become over 65