●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
Lets do this step by step.
Simplify
.
To write -4 as a fraction with a common denominator, multiply by ![\frac{x}{x}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7Bx%7D)
![\frac{3x - 2}{x} - 4 . \frac{x}{x} > 0](https://tex.z-dn.net/?f=%5Cfrac%7B3x%20-%202%7D%7Bx%7D%20-%204%20.%20%5Cfrac%7Bx%7D%7Bx%7D%20%3E%200)
Combine -4 and
.
![\frac{3x - 2}{x} + \frac{-4x}{x} > 0](https://tex.z-dn.net/?f=%5Cfrac%7B3x%20-%202%7D%7Bx%7D%20%2B%20%5Cfrac%7B-4x%7D%7Bx%7D%20%3E%200)
Combine the numerators over the common denominator.
Subtract 4x from 3x.
![\frac{-x -2}{x} > 0](https://tex.z-dn.net/?f=%5Cfrac%7B-x%20-2%7D%7Bx%7D%20%3E%200)
Factor -1 out of -x.
![\frac{-(-x) -2}{x} >0](https://tex.z-dn.net/?f=%5Cfrac%7B-%28-x%29%20-2%7D%7Bx%7D%20%3E0)
Rewirte -2 as -1 (2).
![\frac{-(x -1 (2)}{x} > 0](https://tex.z-dn.net/?f=%5Cfrac%7B-%28x%20-1%20%282%29%7D%7Bx%7D%20%3E%200)
Factor -1 out of - (x) - 1 (2).
![\frac{-(x + 2)}{x} >0](https://tex.z-dn.net/?f=%5Cfrac%7B-%28x%20%2B%202%29%7D%7Bx%7D%20%3E0)
Simplify the Expression.
_______________
Rewrite - ( x + 2 ) as -1 ( x + 2 ) .
![\frac{-1 ( x+ 2)}{x} > 0](https://tex.z-dn.net/?f=%5Cfrac%7B-1%20%28%20x%2B%202%29%7D%7Bx%7D%20%3E%200)
Move the negative in front of the fraction.
![- \frac{x + 2}{x} > 0](https://tex.z-dn.net/?f=-%20%5Cfrac%7Bx%20%2B%202%7D%7Bx%7D%20%3E%200)
Then your going to find all the values where the expression switches from negative to positive by setting each factor equal to 0 and solving.
![x = 0\\x + 2 = 0](https://tex.z-dn.net/?f=x%20%3D%200%5C%5Cx%20%2B%202%20%3D%200)
Subtract 2 from both sides of the equation.
![x = -2](https://tex.z-dn.net/?f=x%20%3D%20-2)
Solve for each factor to find the values where the absolute value expression goes from negative to positive.
![x = 0 \\x = -2](https://tex.z-dn.net/?f=x%20%3D%200%20%5C%5Cx%20%3D%20-2)
Consolidate the solutions.
________________
Find the domain of
_________________
Set the denominator in
equal to 0 to find where the expression is undefined.
![x = 0](https://tex.z-dn.net/?f=x%20%3D%200)
The domain is all values of x that make the expression defined.
( - ∞, 0 ) ∪ ( 0 , ∞)
Use each root to create test intervals.
|Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.|
Test a value on the interval -2 < x < 0 to see if it makes the inequality true.
Ans : True
Test a value on the interval x > 0 to see if it makes the inequality true.
Ans : False
Test a value on the interval x < -2 to see if it makes the inequality true.
Ans : False
Compare the intervals to determine which ones satisfy the original inequality.
The solution consists of all of the true intervals.
![-2 < x < 0](https://tex.z-dn.net/?f=-2%20%3C%20x%20%3C%200)
The result can be shown in multiple forms.
Inequality Form: ![-2 < x< 0](https://tex.z-dn.net/?f=-2%20%20%3C%20x%3C%200)
Interval Notation: ![( -2 , 0 )](https://tex.z-dn.net/?f=%28%20-2%20%2C%200%20%29)
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀