Answer:
1/4, 1/4, 6/10, 7/10
Step-by-step explanation:
1/4 = 0.25
7/10 = 0.7
6/10 = 0.6
Answer:
1in :4mi
Step-by-step explanation:
Answer:
W'(x) = ![\frac{-240R^2}{h^3}](https://tex.z-dn.net/?f=%5Cfrac%7B-240R%5E2%7D%7Bh%5E3%7D)
Here, the negative sign depicts the loss in weight
Step-by-step explanation:
Data provided in the question :
Function:
W(x) = ![\frac{wR^2}{x^2}](https://tex.z-dn.net/?f=%5Cfrac%7BwR%5E2%7D%7Bx%5E2%7D)
Here,
R = 3,960 miles is the radius of the earth
w = Weight of the pilot = 120 lb
x is the distance from the center of the earth
Therefore,
Rate of change of weight
W'(x) = ![\frac{d(\frac{wR^2}{x^2})}{dx}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%28%5Cfrac%7BwR%5E2%7D%7Bx%5E2%7D%29%7D%7Bdx%7D)
or
W'(x) = ![\frac{(-2)wR^2}{x^3}](https://tex.z-dn.net/?f=%5Cfrac%7B%28-2%29wR%5E2%7D%7Bx%5E3%7D)
on substituting the respective values, we get
W'(x) = ![\frac{(-2)(120)R^2}{(h)^3}](https://tex.z-dn.net/?f=%5Cfrac%7B%28-2%29%28120%29R%5E2%7D%7B%28h%29%5E3%7D)
or
W'(x) = ![\frac{-240R^2}{h^3}](https://tex.z-dn.net/?f=%5Cfrac%7B-240R%5E2%7D%7Bh%5E3%7D)
Here, the negative sign depicts the loss in weight