1) The amount M 1 IS $20 increases by 10% = 10 % *(20) + 20 = 22
2) The amount M1 decreases by 10% = 22- (10%*22) = $ 19,8 IS THE AMOUNT that i earn each week
Answer:x=150
Step-by-step explanation:
Step 1: Subtract 1.2x from both sides.
0.8x+20−1.2x=1.2x−40−1.2x
−0.4x+20=−40
Step 2: Subtract 20 from both sides.
−0.4x+20−20=−40−20
−0.4x=−60
Step 3: Divide both sides by -0.4.
−0.4x
−0.4
=
−60
−0.4
Answer: The eye color of people on commercial aircraft flights is a discrete random variable.
Step-by-step explanation:
A discrete random variable is a variable with real values that are countable.
A discrete random variable has a probability that is between 0 and 1 for each possible values and the sum of all these probabilities equals 1.
Answer:
![\frac{y-x}{x+y}](https://tex.z-dn.net/?f=%5Cfrac%7By-x%7D%7Bx%2By%7D)
Step-by-step explanation:
We are given that fraction
![\frac{\frac{1}{x}-\frac{1}{y}}{\frac{1}{x}+\frac{1}{y}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cfrac%7B1%7D%7Bx%7D-%5Cfrac%7B1%7D%7By%7D%7D%7B%5Cfrac%7B1%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7By%7D%7D)
We have to find the expression which is equivalent to given fraction .
![\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bx%7D-%5Cfrac%7B1%7D%7By%7D%3D%5Cfrac%7By-x%7D%7Bxy%7D)
![\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bx%7D%2B%5Cfrac%7B1%7D%7By%7D%3D%5Cfrac%7Bx%2By%7D%7Bxy%7D)
Substitute the values then, we get
![\frac{\frac{y-x}{xy}}{\frac{y+x}{xy}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cfrac%7By-x%7D%7Bxy%7D%7D%7B%5Cfrac%7By%2Bx%7D%7Bxy%7D%7D)
We know that
![\frac{\frac{a}{b}}{\frac{x}{y}}=\frac{a}{b}\times \frac{y}{x}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cfrac%7Ba%7D%7Bb%7D%7D%7B%5Cfrac%7Bx%7D%7By%7D%7D%3D%5Cfrac%7Ba%7D%7Bb%7D%5Ctimes%20%5Cfrac%7By%7D%7Bx%7D)
Using the property then, we get
![\frac{y-x}{xy}\times \frac{xy}{x+y}](https://tex.z-dn.net/?f=%5Cfrac%7By-x%7D%7Bxy%7D%5Ctimes%20%5Cfrac%7Bxy%7D%7Bx%2By%7D)
![\frac{y-x}{x+y}](https://tex.z-dn.net/?f=%5Cfrac%7By-x%7D%7Bx%2By%7D)
This is required expression which is equivalent to given expression.