Answer:
Relative dating is used to determine a fossils approximate age by comparing it to similar rocks and fossils of known ages. Absolute dating is used to determine a precise age of a fossil by using radiometric dating to measure the decay of isotopes, either within the fossil or more often the rocks associated with it.
Explanation:
Answer:
So one partner has genotype: Aa or AA while the other without dimples has: aa
There can be children with dimples only if the first partner with dimples has as genotype Aa.
That is a subduction or convergent boundary that can form volcanoes when two plates collide against each other.
Answer:
D) In case 1, both PS I and PS II completely lose function; in case 2, a proton gradient is still produced.
Explanation:
The light dependent reaction of photosynthesis, which produces the ATP and NADPH needed in the light independent stage of the process, includes complexes of proteins and pigments called PHOTOSYSTEMS. These photosystems (I and II) are key to the functionality of the light dependent reactions in the thylakoid.
The major pigment present in both photosystems is CHLOROPHYLL A, which absorbs light energy and transfers electrons to the reaction center. Chlorophyll B is only an accessory pigment meaning it can be done without. Hence, if all of the chlorophyll A is inactivated in the algae but leaves chlorophyll B intact as in case 1, both PS I and PS II will lose their function because Chlorophyll A is the major pigment that absorbs light energy in both photosystems.
In case 2, if PS I is inhibited and PS II is unaffected, a PROTON GRADIENT WILL STILL BE PRODUCED because the splitting of water into protons (H+) and electrons (e-) occurs in PSII. Hence, H+ ions can still be pumped into the inner membrane of the thylakoid in order to build a proton gradient even without the occurrence of PS I.
Answer:
Topoisomerase
Explanation:
Topoisomerases are enzymes that produce changes in the topology of the DNA during replication, transcription, traduction, or reparation processes. They can cut one or both strands and in order to relieve torsional stresses in the supercoiled structure of DNA. With this, they help to maintain the chromosome's integrity. There are two types of topoisomerases: topoisomerase I (it cuts only one strand of DNA) and topoisomerase II (it is able to cut both strands of DNA).