Answer:
There will be $5624.32 in the account after 3 years if the interest is compounded annually.
There will be $5630.812 in the account after 3 years if the interest is compounded semi-annually.
There will be $5634.125 in the account after 3 years if the interest is compounded quarterly.
There will be $5636.359 in the account after 3 years if the interest is compounded monthly
Step-by-step explanation:
Tamira invests $5,000 in an account
Rate of interest = 4%
Time = 3 years
Case 1:
Principal = 5000
Rate of interest = 4%
Time = 3 years
No. of compounds per year = 1
Formula :

A=5624.32
There will be $5624.32 in the account after 3 years if the interest is compounded annually.
Case 2:
Principal = 5000
Rate of interest = 4%
Time = 3 years
No. of compounds per year = 2
Formula : 

A=5630.812
There will be $5630.812 in the account after 3 years if the interest is compounded semi-annually.
Case 3:
Principal = 5000
Rate of interest = 4%
Time = 3 years
No. of compounds per year = 4
Formula : 

A=5634.125
There will be $5634.125 in the account after 3 years if the interest is compounded quarterly.
Case 4:
Principal = 5000
Rate of interest = 4%
Time = 3 years
No. of compounds per year = 4
Formula :

A=5636.359
There will be $5636.359 in the account after 3 years if the interest is compounded monthly
Answer:
$162
Step-by-step explanation:
Discount = percentage discount ÷ 100 × original cost
Discount =
× $405 = $162
Answer: The number of sides of the shape.
The angles between the sides of the shape.
The length of the sides of the shape.
Step-by-step explanation:
2/5 lbs walnuts > 1/3 lbs almonds
Hope this helped ;)
We can rewrite the expression under the radical as

then taking the fourth root, we get
![\sqrt[4]{\left(\dfrac32a^2b^3c^4\right)^4}=\left|\dfrac32a^2b^3c^4\right|](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cleft%28%5Cdfrac32a%5E2b%5E3c%5E4%5Cright%29%5E4%7D%3D%5Cleft%7C%5Cdfrac32a%5E2b%5E3c%5E4%5Cright%7C)
Why the absolute value? It's for the same reason that

since both
and
return the same number
, and
captures both possibilities. From here, we have

The absolute values disappear on all but the
term because all of
,
and
are positive, while
could potentially be negative. So we end up with
