1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonbull [250]
3 years ago
15

How do I find a unit rate of 17.86

Mathematics
1 answer:
Reil [10]3 years ago
8 0
To find the unit rate, divide the numerator and denominator of the given rate by the denominator of the given rate. So in this case, divide the numerator and denominator of 70/5 by 5, to get 14/1, or 14 students per class, which is the unit rate. <— that’s your answer! :)
You might be interested in
What is the answer to 5/12 - 3/20?
svetlana [45]
0.116 that is the answer
7 0
2 years ago
Solve for a:<br><br> 28000/1+a = 0
nika2105 [10]

1207838929299236636236+2892

5 0
3 years ago
How to do the inverse of a 3x3 matrix gaussian elimination.
nata0808 [166]

As an example, let's invert the matrix

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}

We construct the augmented matrix,

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

On this augmented matrix, we perform row operations in such a way as to transform the matrix on the left side into the identity matrix, and the matrix on the right will be the inverse that we want to find.

Now we can carry out Gaussian elimination.

• Eliminate the column 1 entry in row 2.

Combine 2 times row 1 with 3 times row 2 :

2 (-3, 2, 1, 1, 0, 0) + 3 (2, 1, 1, 0, 1, 0)

= (-6, 4, 2, 2, 0, 0) + (6, 3, 3, 0, 3, 0)

= (0, 7, 5, 2, 3, 0)

which changes the augmented matrix to

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

• Eliminate the column 1 entry in row 3.

Using the new aug. matrix, combine row 1 and 3 times row 3 :

(-3, 2, 1, 1, 0, 0) + 3 (1, 1, 1, 0, 0, 1)

= (-3, 2, 1, 1, 0, 0) + (3, 3, 3, 0, 0, 3)

= (0, 5, 4, 1, 0, 3)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 5 & 4 & 1 & 0 & 3 \end{array} \right]

• Eliminate the column 2 entry in row 3.

Combine -5 times row 2 and 7 times row 3 :

-5 (0, 7, 5, 2, 3, 0) + 7 (0, 5, 4, 1, 0, 3)

= (0, -35, -25, -10, -15, 0) + (0, 35, 28, 7, 0, 21)

= (0, 0, 3, -3, -15, 21)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 3 & -3 & -15 & 21 \end{array} \right]

• Multiply row 3 by 1/3 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 3 entry in row 2.

Combine row 2 and -5 times row 3 :

(0, 7, 5, 2, 3, 0) - 5 (0, 0, 1, -1, -5, 7)

= (0, 7, 5, 2, 3, 0) + (0, 0, -5, 5, 25, -35)

= (0, 7, 0, 7, 28, -35)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 0 & 7 & 28 & -35 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 2 by 1/7 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 2 and 3 entries in row 1.

Combine row 1, -2 times row 2, and -1 times row 3 :

(-3, 2, 1, 1, 0, 0) - 2 (0, 1, 0, 1, 4, -5) - (0, 0, 1, -1, -5, 7)

= (-3, 2, 1, 1, 0, 0) + (0, -2, 0, -2, -8, 10) + (0, 0, -1, 1, 5, -7)

= (-3, 0, 0, 0, -3, 3)

\left[ \begin{array}{ccc|ccc} -3 & 0 & 0 & 0 & -3 & 3 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 1 by -1/3 :

\left[ \begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

So, the inverse of our matrix is

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}^{-1} = \begin{bmatrix}0&1&-1\\1&4&-5\\-1&-5&7\end{bmatrix}

6 0
2 years ago
Suppose y varies inversely with x. Write an equation if y=7 when x=-4
luda_lava [24]

Answer:

y = -28 ÷ x

Step-by-step explanation:

The standard format of a inversely proportional equation goes by the format of y = k ÷ x. The question asks us to write an equation if y = 7 when x = -4 and y varies inversely with x.

So we substitute the values y = 7 and x = -4 in the equation y = k ÷ x

K = constant, we have to work this out

7 = k ÷ -4

7 × - 4 = k

k = - 4 × 7

k = -28

k = -28 So then we put this back into the original y = k ÷ x to find our final equation which is y = -28 ÷ x

3 0
3 years ago
the remains of an ancient ball court include a rectangular playing alley with a perimeter of about 48 M. the length of the alley
Firdavs [7]

Answer:

Length is 20 m and width is 4 m.

Step-by-step explanation:

Given:

Perimeter of the rectangular alley, P=48\textrm{ m}

Length is 5 times the width.

Let width be x.

So, as per question,

Length,l = 5x

Now, perimeter of rectangle is given as:

P=2(l+b)

Plug in 48 for P, 5x for l and x for b.

48=2(5x+x)\\48=2(6x)\\48=12x\\x=\frac{48}{12}=4

Therefore, width is 4 m.

Length is 5x=5\times 4=20 m.

8 0
3 years ago
Other questions:
  • What formula do you use to prove that a triangle is a right triangle?
    6·1 answer
  • What is the median of this list of numbers? 22, 18, 23, 36, 26, 18, 29. A. 22 B. 18 C. 23 D. 36​
    13·1 answer
  • Find the values of θ in the range 0≤θ≤360° which satisfy: 2 sin^2 θ - sinθ -1= 0
    15·1 answer
  • The following examples illustrate the inverse property of addition. Study the examples, then choose the statement that best desc
    5·1 answer
  • How many positive integers less than 1,000 do not have 7 as any digit?
    7·1 answer
  • PLEASE NEED HELP WILL MARK BRAINLIEST FOR BEST ANSWER
    9·2 answers
  • What is the surface area of the triangular prism?
    15·1 answer
  • Find a formula for the nth term
    11·2 answers
  • -5x -10 &gt;30 help Hehehehehe.
    14·1 answer
  • What is the perimeter of a square who’s sides are ten units long?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!